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XVIIL. On Riccatr’s Equation and its Transformations, and on some Definite
Integrals which satisfy them.

By J. W. L. GrasHER, M. A., F.R.S., Fellow of Trinity College, Cambridge.
Received and read June 16, 1881.

Introduction.

THE present memoir relates chiefly to the different forms of the particular integrals of
the differential equation

Pu, _p@+1)

d—mz—cozu=—g;2——u N ¢ § N

and to the evaluation of certain definite integrals which are connected with this
equation. Transforming (1) by assuming u=x"7v, it becomes

v 2pde
d%g_; d—w—cm):O e e e e e e e e . (2),
that is, writing n—1 for 2p,
d* a—=1ldv .,
and this equation may be transformed into
d?
@ w=0 . . . . ... ... (4)

dz?

by the substitution w=$z7, where q:%. The equation (4) may be regarded as the

standard form of RIccATr’s equation (see § IIT., art. 17).

It is well-known that these equations admit of integration in a finite form if p =
an integer, n = an uneven integer, and ¢ = the reciprocal of an uneven integer,
respectively.

The contents of the memoir are as follows :

In the first section (§ L) six particular integrals of the equation (1) are obtained,
and the relations between them are examined. When p is not an integer, all the six
integrals extend to infinity, and in this case the relations between them present no
special peculiarity. When p is an integer, two of the series terminate, and we thus
obtain two particular integrals of (1) which contain a finite number of terms. The
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760 MR. J. W. L. GLAISHER ON RICCATI'S

series terminate in consequence of the occurrence of zero factors in the coefficients of
the terms, but if they are continued, zero factors occur also in the denominators, so
that, after a finite number of zero terms, the series may be regarded as recommencing
and extending to infinity. If the terminating series are supposed to recommence in
this manner, so that all the series extend to infinity, then the relations between the
particular integrals are the same as when p is not an integer; but if the series are
supposed to terminate absolutely when the zero terms occur, the relations are quite
different. As the finite portions of the particular integrals satisfy the differential
equation, it is more natural to regard the series as termirating absolutely, and on this
supposition the relations between the particular integrals exhibit a remarkable diversity
of form according as p is or is not an integer.

The second section contains what is believed to be a new form of the solution of (1)
in the case of p = an integer. It is shown that if p=1, a positive integer, this
equation is satisfied by the coefficient of %*! in the expansion of eY®**+*» in ascending
powers of h. The six particular integrals given in § I. of the equation (1) and the
relations connecting them are obtained by different expansions of this expression.

The third section contains the six particular integrals of (3) and (4) corresponding
to those of (1), from which they are deduced by means of the transformations stated
above.

The fourth section relates to the particular cases in which the differential equations
admit of integration in a finite form. If a differential equation is satisfied by an
infinite series, and if for certain values of a quantity involved in it the series termi-
nates, then in this case we may present the integral in a different form by commencing
the finite series at the other end, and writing the terms in the reverse order.

Thus, for example, a particular integral of (1) is u=P, where

o p o pp—1)@d p(p— 1)(1)—2) @’ i
P {1t = e |

but, if p = a positive integer, then commencing the series at the other end,

P(—)r 2rgr {1 19(20+1)1+(20 Dp(p+D)(p+2) 1

(p+1)(p+2). 2.4 a*®

12 22p 17
+(=)r 5T 2196(1790?’}6

These reverse forms in the case of the equations (1), (3), (4) are given in this

section.
It is worthy of remark that if we are given a particular integral of a differential

equation in the form of a terminating series, such as, for example,
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p(p+1) 1

1— + (p—Dp(p+1)(p+2) 1

2 ax 2.4 a®z?

—&ec.,

p being a positive integer, then we might suppose that the corresponding particular
integral, when p was not an integer, would be obtained by continuing the series, which
does not then terminate, to infinity. This infinite series, when p is not an integer,
still satisfies the differential equation, but is divergent; and the true integral is
obtained by commencing the series at the other end and continuing it to infinity
backwards. In general, when we have a series which terminates of itself for a parti-
cular form of p, we may derive from it two infinite series, when p has not this form,
by commencing it at either end. One of these will be an ascending series and the
other a descending series ; and we can thus, as it were, pass from the one to the other
through the intervention of the finite series.
The fifth section contains the evaluations of the definite integrals

a? 0
—am=" cos bz
e @l [ S, /)y
J’O 3 0 (a2+w2>7L 2

where m denotes any real quantity and n any positive quantity. These integrals have

been evaluated when m is of the form and when 7 is a positive integer ; but, so

—43
2i+1
far as I know, the general formule given are new. It is known that these integrals
satisfy differential equations of the forms (4) and (1) respectively, so that their values
are necessarily connected with the solutions of these equations considered in §§ I. and
III.  The results are curious, as they exhibit changes of form similar to those referred
to in describing the contents of § I., and which are due to the same cause—viz. the
recommencement of the terminating series after the zero terms.

When n is unrestricted it is shown that we have

I n—1 (n—1)(n—3) (2a)? o
L)x le da= %I‘(%n){1+n_1(2a)+(n_1)(n_2) 91 -j—&c.}e %

(n+1)(n+3) (2a)? o,
(n+1)(n+2) 2! +&C'}e “

+ir(—3 n)a"{l+ (2 )+

but when 7 is a positive integer the first series is to be continued till it terminates, and
the second is to be ignored ; and if » is a negative integer the second is to be con-
tinued till it terminates, and the first is to be ignored. The well-known value of the
integral when n—1 = an even integer =2i, viz.

j: o dw—‘/w {1+z(z+1) 1 +(@—1)’0(7f221)(’0+2>< )—|—&c} 2
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762 MR. J. W. L. GLAISHER ON RICCATI'S

does not suggest the general formula, the terms of the finite series being written in
the reverse order.

Certain formulee of Boorw’s and CaucHY’s are also considered and extended in this
section.

The sixth section, which is the longest in the memoir, velates to the numerous
symbolic solutions of the equation (1) and its transformations (3) and (4) in the cases
in which they are integrable in finite terms. In this section these symbolic solutions
are derived from the definite integrals considered in § V.; and the various symbolic
theorems to which they lead by comparing different forms of the results are examined.
A great many symbolic solutions of the differential equations have been given by
R. L. Evurs, Boovre, LEBEsGUuE, HARGREAVE, WiLLiAMSON, DoNkIN, &c., and these
are briefly noticed and connected with one another. It may be observed that the

solution
Y AT AR Cate ol
z dx z ’

which has been several times independently discovered, seems to have been first
published by Mr. GaskiIN, who in effect gave it in a problem set in the Senate House
Examination at Cambridge in 1839.

The seventh section relates to the connexion between the results given in §§ L-VI.
and the formulee of BEssEL’s Functions. BESSEL's equation

Py Ldw <1-”§>w=0,

dz® 'z dx x

may be derived from (1) by the simple substitutions
w=wtw, p+i=v, a*=-—1;

so that all the theorems relating to the solutions of (1) have analogues in the solutions
of BESSEL’s equation, which are deducible from them by these transformations. In
this section the formuls in BrsserL’s Functions which correspond to those considered
in the memoir are stated in a convenient form for comparison. The number of such
formulee is not great, and the substitution of ,/(—1) for @, which converts exponentials
into sines and cosines, and a single series multiplied by an exponential factor into the
sum of two series multiplied respectively by a sine and a cosine, changes considerably
the appearance of the results, which, from an analytical point of view, are less simple
when the differential equation is of Bmsser’s form. The principal case considered
in the theory of BrssmL's Functions is that of » = an integer: this corresponds
to the case of p = an integer 43, which is generally excluded in this memoir, as
it renders certain of the particular integrals infinite (§ L, arts. 1, 3). The case of
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finite solution corresponds in (1) to p = an integer and in BEsSEL's equation to
v = an integer +4%. The fact that BrssEL'S function J*(z) is expressible in a finite
form when »=1-4-4, and the finite expression itself, are well known, and the case is an
important one in physical investigations; but, so far as I know, the recommencement
of the series after the zero terms has not been specially noticed in connexion with the
subject of BesSEL's Functions.

The eighth (and last) section contains a list of writings the contents of which are
closely connected with the subject of the memoir, arranged in order of date and classed
under the sections in which they are noticed. There is also in each case a short
account of the portion of the paper for which it has been referred to, with the numbers
of the articles in which the references occur. The section does not contain a list of
all the papers referred to in the memoir; only those papers which are closely connected
with it, and portions of which are, in most cases, to some extent reproduced in it,
being included. The part of the list which relates to § VL. is intended to be supple-
mentary to that section : it is not in any sense a bibliography of the symbolic solutions,
but it probably contains references to all the more important papers on the subject.

In the ¢ Philosophical Magazine’ for 1868 CAYLEY gave the four particular integrals
Py, Qg Ry, Sy (§IIL) of Riccarr’s equation (4); and in the same journal for 1872
I investigated the relations between these four particular integrals and the well-known
particular integrals U,, V. The results are the same as those given in §III., and the
method is similar to that employed in §I. I afterwards found that the process of
obtaining and connecting the particular integrals assumed a much more simple form
when the differential equation was taken to be (1) than when it was (4); and it
seemed desirable to re-write the whole investigation, taking (1) as the differential
equation. This investigation forms §1.; it is similar in every respect to that contained
in the ‘Philosophical Magazine,” but is much more complete. The corresponding
results for the equations (3) and (4) are deduced in § ITL.

The fact that, in the solution in series of a differential equation, if the series
terminates but when continued recommences, the latter portion as well as the finite
series satisfies the differential equation, was pointed out by CAYLEY in the ¢ Messenger
of Mathematics’ for 1869.

The formula (8) of §V. was published in the ¢ British Association Report’ for 1872,
with a brief account of the process given in arts. 20, 21.  The principal portion of two
short papers, “On Riccarr’s Equation” and “On certain Differential Equations allied
to Riccarr’s,” which were published in the ¢Quarterly Journal of Mathematics’ for
1871 and 1872, are incorporated in § VL.

The memoir thus includes the results contained in several scattered notes and
papers. In these the differential equation considered was generally RiccaTrs in the
form (4), but the advantage of adopting (1) as the standard form in preference to (4)
is considerable, As far as the differential equation is concerned (4), which consists of

O F 2
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only two terms, is the simplest form ; but as regards the expression of the results,
both (1) and (3) are superior in every respect. The equation (3) was adopted as the
standard form by M. BacH in his paper of 1874 (see § VIIL).

The form 2¢g—2 for the exponent in RiccATr's equation (4) was first employed, I
believe, in CAYLEY’S paper in the ¢ Philosophical Magazine’ for 1868, which has been
already referred to. The use of the quantity ¢ greatly simplifies the formulee relating
to the solution of the equation.

With the exception of § VII., the memoir was written about three years ago, the
delay in communicating it to the Society being due to the fact that it seemed desirable
to connect the results more closely with BesseL’s Functions. As the theory of these
functions forms a distinct and recognised branch of analysis, and as the differential
equations considered are transformable into BESSEL’S equation by very simple changes
in the variables, it was clearly of importance to examine with some care the connexion
of the formulee with those of BrsseL’s Functions, and it even seemed possible that it
might be advisable to adopt BESSEL'S equation as the standard form. For the reasons
already stated it appeared that this was not the case, and that the analytical treat-
ment of the subject was complicated by the change to BESSEL’s equation. It is well
known that the general integrals of the differential equations (1),...(4) can be
expressed in terms of BEsSEL'S Functions ; and LoMMEL has specially considered these
solutions in several papers in the ‘Mathematische Annalen.’* In these papers,
however, the points to which the memoir relates are not referred to. It therefore
seemed sufficient to give in §VII. the connexion between the principal formulze,
reserving for a separate paper, if it should appear desirable, the examination of the
relations in which the series considered in the memoir stand to BrsseL’s Functions
with negative indexes and to the functions of the second kind introduced by LoMMEL
and by NEUMANN.

During the time that the memoir has been in manuscript I have published two
extracts from it, viz. the theorem in § IIL, arts. 8, 9, in the °British Association
Report’ for 1880, and the theorem (50) and its proof (§ VL., art. 41) in the ¢ Proceedings
of the Cambridge Philosophical Society’ for 1879.

The differential equations (1), ... (4) present three distinct peculiarities, viz. (i)
they are finitely integrable only in special cases; (il.) they are satisfied by certain
remarkable definite integrals, which have attracted attention quite independently of
the differential equations; and (iii.) the solutions when finite admit of being exhibited
in various symbolic forms. In reference to the third of these properties, it is remark-
able how much attention has been devoted to the solutions of the equations in these
finite cases during the last fifty years. The differential equations (1), ... (4) have
however been frequently discussed not as simple transformations of one another

* Vol. ii. (1870), pp. 624-635 ; vol. iii. (1871), pp. 475-487; vol. xiv. (1879), pp. 510-536.
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but as if they were essentially different, and the processes of solution have been
applied to them independently. Also many of the forms have been re-discovered
several times ; and it therefore seemed to be worth while to collect together, as in
§ VL, the different symbolic formulée, and exhibit the nature of the relations between
them. : v ‘

Although the equation (1) is connected with BESSEL'S equation by such simple
relations, the methods of treatment of the two equations by mathematicians have been
very different. In the case of (1) and its transformations (2), (3), (4), the purely
analytical part of the theory and the forms of the solutions have chiefly attracted
attention ; while in the case of BESSEL’S equation the expansion of the results in series
suitable for calculation has been one of the main objects. The theories of the two
equations have been developed from very different points of view: the one has been
considered in reference to the methods of solution and the peculiarities already referred
to, and the other has been considered almost wholly in connexion with the functions
which satisfy it, and their applications in astronomy and physics. It is curious that
two such very distinct classes of analytical investigation should have been formed
having reference to differential equations so closely connected.

It is proper to remark here that in the differential equation (1) and throughout the
memoir the constant ¢ may be put equal to unity without loss of generality. It was
found to be desirable to retain it, as there is some advantage in having present in the
solutions a letter whose sign can be changed at pleasure, and also because the transition
to the differential equations

1 1
ﬂ+a2u=£%j_2% &,

da?

(v.e., in which the sign of o? is changed) is thus rendered somewhat more convenient.
The ordinary differential equations (1), ... (4) are considered throughout, and no
reference is made to the corresponding partial differential equations

Pu_ yu_p(p+1)
da? Ay~ 2

u, &ec.,

the solutions of which may be deduced in the usual manner by replacing a by ali,
«y

and c,e® and cee” by ¢(y—+ax) and y(y+ax). No point of interest arises in connexion
with this transition.

Following the notation usually adopted in connexion with the differential equa-
tion (1), ¢ is used throughout to denote a positive integer. The expression ,/(—1),
which occurs only towards the end of § VI. and in § VII., is denoted by ¢".
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The headings of the eight sections, with the numbers of the articles which they
contain and the pages, are as follows :

§ I. Direct integration of the differential equation in series, and connexion between the particular
integrals. Arts. 1-7; pp. 766-774.
§ IT. Integration of the differential equation when p = an integer. Arts. 8-15; pp. 774-779.
§ III. Transformations of the original differential equation. Riccarr’s equation. Arts. 16, 17;
pp. 779-782.
§ TV. Special forms of the particular integrals in the cases in which the differential equations admit
of integration in a finite form. Arts. 18, 19; pp. 783, 784.
§ V. Evaluation of definite integrals satisfying the differential equations. Arts. 20-28, pp. 784-797.
§ VI. Symbolic forms of the particular integrals in the cases in which the differential equations
admit of integration in a finite form. Arts. 29-42; pp. 798-819.
§ VII. Connexion with Brsser’s Functions. Arts. 43-48; pp. 819-822.
§ VIII. Writings specially connected with the contents of the memoir. Pp. 823-828.

§ L
Drirect integration of the differential equation in series, and connexion between the
particular integrals.  Arts. 1-7.

1. The most direct method of integrating the differential equation

P plp+1)
. 20y —
gpTUS=T (1),

and obtaining the relations that exist between the different particular integrals, appears

to be as follows.

Let
U= EArxmﬂ"

the summation extending to all positive integral values of #; then, substituting in
the differential equation, we have

(mtr4p)(m+r—p—1)A,—a*A,_,=0,

whence, putting r=0 or 1,
m=—p or p+1.

Taking the first root, the equations giving Ay, A, A, ... are

2(1—2p)A,—a?A =0,
4(3—2p)A,—a*A,=0,
6(5—2p)A,—aA,=0,

. . . . . . L} ¢
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whence
1 o
Aj=— — A,
? p— 270
1 a?
A. =1 S0
2]0 3, 92 2
1 o
—_—1 ¥
AB_ ﬁp _% 92t
so that the solution corresponding to the root m=—p is
1 a%? 1 ot 1 abx8 O
U=w‘ﬁ{1— L - +ge.}
r—% 22 " (p—p)p—3P 282 (p—-HE-HE—4$) 2°3! ’
where, as throughout this memoir, ! denotes 1.2.3 . . . 7.

Similarly, taking the root m= —p—1, the other solution is found to be

1 @ + 1 bzt 1 A + e }
13 2 T+ 221 (D D+ 23T

V= f"“{l
X —l—p

and, as U and 'V are independent, the complete integral of the differential equation is
AU+BYV, A and B being arbitrary constants. »

There is nothing in the form of these series to indicate that for any values of p the
integral of the differential equation admits of being expressed in a finite form. They
show, however, that if p = the half of an uneven integer (the case p=—15 alone
excepted) the solution assumes a different form, viz. if, say, in U the terms after a
certain point become infinite, the solution is of the form W4V log cz, W being a
new series. This case is excluded in what follows; and throughout the memoir p is
supposed not to be of the forms 43(2n-+1). If, however, p is of either of these
forms only certain of the series considered will involve infinite terms, and the relations
connecting those series which do not involve infinite terms will still remain true.

2. Transforming the differential equation (1) by assuming w=e“v, a substitution
suggested by the form of the first member of the equation, we obtain the differential

equation in v
@ o _r(p+1),

do + 2adx a?
Putting as before
v=3A,x""",
we have
(m~4r+4p)m+tr—p—1)A,+2(m+r—1)aA,_ =0,
whence

m=—p or p+41.
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Taking the first root, the equations are
( —2p)A,+2( —p)ad,=0,
2(1—2p)A,+2(1—p)aA,=0,
3(2—2p)A;+2(2—p)ad,=0,

.....................

giving

-1 -2
A1=—§aAO, Ay=—3"0A,  A=—1T"ZgA, .. ;
and we obtain the particular integral

- P p(p=1) a’* p(p—1)(p—2) o®
f’{l 2=t b 2 pr=Hr=1) EIR }

Similarly, the other particular integral is found to be

1
xﬁ+1{1+10+

ao @FV@HD) E2 | (p+D(p+2(p+3) m&+&}

(p+1)(p+3) 2! " (p+1)(p+3)(p+2)

If we had transformed (1) by assuming uw=e~%v, we should have obtained a differ-
ential equation in v differing from that given above only in having the sign of «
changed : and the two particular integrals would differ from those JL1st written only in
having the signs of the alternate terms negative. ‘

8. Thus, of the differential equation

% —a*u =Zo~<%:—1)

)

we have obtained the six particular integrals U, V, P, Q, R, S, where

= {17}% a‘gﬂp—@l@—%) %—@_wig)w %) ‘ff*&c }‘ g
Vzwﬁ_ﬂ{“’piggg (p+%>](p+%>% (p+3>(p15)@+1) 20&6626*&0}’
Qmr{i-Ethe HEEUED L QU 02 ).
R fbfe 4SS HOTOT S el
st {14g e HEEE SR
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These integrals form three pairs U and V, P and Q, R and S, either of the integrals
in each pair being deducible from the other by the substitution of —(p~-1) for p:
and, since the differential equation involves p only in the form p(p-+1), it is evident
@ priort that if in any expression satisfying the differential equation, p is replaced by
—(p+1), the new expression must still satisfy the differential equation.

Also the pairs P and Q, R and S, are convertible the one into the other by changing
the sign of «.

4. If p is a positive integer the series in P and R terminate and the general integral
of the differential equation is AP+BR ; and if p is a negative integer, the series in
Q and S terminate and the general integral is AQ4BS.

Thus, if p=2, the general integral is

u=Ax"{1—ax+La%?} e+ B2 {1+ axt a2} e ;
and, if p=—2, the general integral is
u=Ax"{1—ax}e*+Bx {14 ax}e.

5. As however we have six particular integrals, of which, for any given value of p,
only two can be independent, it remains to investigate the relations between the
particular integrals in the different cases that arise.

(1°.) Suppose p unrestricted (except as mentioned in art. 1), but not equal to an
integer.

In this case all the series extend to infinity, and

P=R=T, Q=S=V

for, leaving out of consideration the factor x that occurs in both P and U, the
coefficient of a”x"in P

1 p 1 p(p—1) 1 W Pp=1 .. {p—m-1)} 1
=T P =) T pp—d) =221 + )mo—%. Ap—3(n—1)} n!
1 p 2 +ma—1> 2? (=) 2= {p—(n=1)} 2
Tl 2p (n—1)1" 2p(2p—1) (n—2)121" 7 2p(2p— 1) {2p—(—1)} n!
_ 1 {2})(210——1) o 2p—(n—1)}
T 2p(2p—1) ... {2p—(n—1)} n!
=1@=2) ... {Zp=(n=D} | W P(p=1) .. {p—(@m=1}
- (n— 1)1 24 (=) ! 2}’

and we see that the expression in brackets is equal to the coefficient of ¢* in the
expansion of
MDCOCLXXXI 5 G
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1412 — .28 (14 1)1+ LCTY) 92001 4 e
P 21

+(_)n .20(20—1) ct {p—(%—l)} 2;;{/1(1 _I_t)Q]J-—n’

n!

that is, in

(1 +t)94’<1 _1_%>p=(1 +t)P(1 —)r=(1—2?)2.

If, therefore, n is uneven the coefficient of a”z* in P is zero, and if n is even the
coefficient
_ 1
T 2p(2p-1) ... {2p—(n—1)}
. in 1 1
=(=) (P—H@—9 .. - p—Er—1)} 2Gn)!

oo p(p=1) ... {p—n+ 1)}

(= ()!

which is the coefficient of a"z" in U.

Since R differs from P only in having the sign of @ changed, and since U is a
function of a? only, it follows that P=R=TU. Also, since Q, S, V differ from P, R, U
only in having —(p+1) in place of p, it follows that Q=S=V.

(2°). Suppose p a positive integer, =1, say.

In this case the (¢41)™ term of the series in P, including the factor 27, is

Ly =) (=2) .. {i—(i=1)} o
2 )i(i—%)(z’—l)...{i—%(i—l)} Tk

and the next term vanishes owing to the presence of the factor —7 or 0 in the

numerator.
For the same reason all the succeeding terms vanish until the factor ¢—1 appears in
the denominator also, when the zero factors cancel one another and the series

recommences, the first term of the new series being

o i(i=1) . 10.—1.—2 ... (i—20) aftighit]
T dG—d) . {i—=3Zi=1D)}0 (204 1)
1

TR %141
— e % i
=(=) <2¢ z) 2041 2"

B 2041

—\itl L‘li+1 i+ 1
=(=)"ass T eanpde

2+l

IS | re g=(—)*1 - 1)
=ga'*!, where g=(—) {(135... 2+1)p"
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The new series, multiplied by the factor e*, thus becomes

pf G (+1)(+2) ab
g* {1 A1 s 2 &"“}6

=9Q.

Denoting then by P’ the finite part of P, the series being supposed to end at the
term immediately preceding the first term which contains a zero factor in the
numerator, viz. putting

z(z—l) ata?

L —1) % Y 7! A,
P=a { “ oy 2 YO oy T asemny o }e ’

we have found that

P=P'+¢Q="U.

Similarly, if R’ denotes the finite part of R, the series ending at the term immediately
preceding the first term which contains a zero factor in the numerator, we find that

R=R'—¢S=TU,
and also, as before,

Q=S=V

The proof in (1°) that P=T does not apply as it stands when p=31, but it can be
extended so as to include this case by putting p=1i+5h, and making % indefinitely
small. The equality of P and U for all values of p may however be proved without
the use of limits by showing that the coefficient of " in Ue™ is equal to the coefficient
of 2 in P. To prove this; first suppose n to be even and =2m, then the coefficient of
a** in x?Ue™* is equal to

1 1 1 1 1 1 1

@) =32 @)t —D(p—3) P2 @u—D!
: 1 1
+(=) (P=D@=%) ... (p—m+g) 2m!
_ 1 i 1 {( D=9 .- (p=m+d)
T2m(2m—1) ... (m+1) (p—%H(P—3) ... (p—m+%) m!
—3)...(p—m+3% 2m(2m—1) ... 1) 1
_(m—%)(p 2 (m—(f)! * ). e (=) (2m znl (m+ )2Tm}

The last term

PR .7 N S et 3l Gl JRRRS 3
—( ) (m )2 28m™ ( ) n!
5¢ 2
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and the expression in brackets is equal to the coefficient of ¢ in
1 g (m—FH(m—2 s -H...% S
(1+t)1’ “—(m——%—)t(l—l—t)f’ g+(__2;_)?_(!‘z___%_2t2(1+5)p 9_”_|_(_)m(m._ib_)1_2tm(1+t)n n—%
_—_(1+t)p—%{ 1_——}“ = (14-t)rn.

The coefficient of " in the expansion of (14#)?~" is equal to

(p—m)(p—m—1) ... (p—-—2m+1),
m!

and therefore the coefficient of a*x* in x?.Ue™ is equal to

1 (p—m)(p—m—1)...(p—2m+ l),
@m)! (p=H@P—3) ... (p—m+3)

which is the coefficient of ¢ in x7.P when the factors p(p—1)(p—2) ... (p—m-+1)
are divided out from the numerator and denominator.
Similarly, if n=2m -1, the coeflicient of a***1la?*1in x».Ue™* is found to be equal to

_ 1 (p—m—1)(p—m—2) ... (p—2m),
@m+Dt (p—=D(p—H) ... (p—m+3)

which is the coefficient of a2*1x?+! in %2, P when the factors p(p—1) ... (p—m) are
divided out from the numerator and denominator.

Thus, if p=1, the coefficients of the terms involving #™*!, 2*?, . .. 2% in the series
in P vanish, and we have U=P"+¢Q.

(8°) If p = a negative integer =—i—1, then Q and S involve zero terms, and,
denoting by Q" and §' the values of Q and S when the series are supposed to terminate
at the term preceding the first term involving a zero factor in the numerator, V, Q,
and S become equal to U, P, and R when p is put equal to 7, that is, to the U, P,
and R of (2°) and wice versd. In this case, therefore,

Q=Q+gP=V=8=8—gR,

and

P=R=T.

The relations between the particular integrals in the three cases are therefore

(1°) p not = an integer,

P=R=T, Q=8S=V.
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(2°) p = a positive integer,
P=R=U=}(P'+R), Q=.S=V=%q (R'—P);
(3°) p = a negative integer,

P=R—_—U=—2—1§(S’—Q'), Q=S=V=4(Q+8);

6. If we suppose the series a1ways to terminate directly a zero factor appears in a
numerator (so that P’, Q’, R, 8" are now denoted by P, Q, R, 8), the relations are
(1°) p not = an integer,

P=R=T, Q=S=V;
(2°) p = a positive integer,

Q=S=v=2lg(ﬂ_1>), U=4(P+R);
(3°) p = a negative integer,

1 1
P=R=U=2~g(S—Q), V=4(Q+8);

The change of form of the relations, which in this mode of statement appears so
remarkable, does not, as we have seen, occur if the series be supposed to extend to
infinity in all cases.

It may be observed that it is clear from the manner in which the series were
obtained in arts. 1 and 2 that we are always at liberty to stop at the term immediately
preceding the first term containing a zero factor in the numerator, as this finite portion
of the series satisfies the differential equation, and that the second series obtained by
allowing the terms to recommence and to extend to infinity also satisfies the differential
equation.

The phrase ““ term preceding the first term containing a zero factor in the numerator ”
has been used in preference to ‘‘term preceding the first zero term” in order to
include the cases of p=0 or p=—1, in which no zero term occurs.

7. It was shown in art. 5 that

p(p=1) o* _p(p—1)(p—2) o'z’ g
< 1000 +p(10 1 21 p(p=H(p-1) 3'+&C>

1. o 1 otz 1 obaxb

DI

=1—-

p—% 22 T (p—D(p—>) 222" (p—Hp—i)(p—



774 MR. J. W. L. GLAISHER ON RICCATI'S

Putting 2p=—m —1 in this identity, we have

m+1 (m+1)(m+3) ax? (m+1)(m+3)(m+5) a?y?
<1— +(m+1)(m+2) 2! (m+1)(m+2)(m+3) 3'+& )
1 a?? 1 atyt 1 abab
mt2 2 Tmi2)mtd) 220 (mt 2)(mt ) (m 1 6) g gr T e

=14

The right-hand side of this equation is unaltered by a change of sign of x, and
therefore, putting a=1,

m+1  (m+1)(m+3) 2? (m+1)(m+3)(m+5) 3 z
<1—m+lx+(m+l)(m+2) 20 (m+1)(m+2)(m+3) 3! >6

(m+1)(m+ 3)(m+ 5) at
(m+1)(m+2)(m+3) 3!

=<1+m+1 (m+1)(m+3) a:2+

w12t (mt2) 2! it é&e )

which is true for all values of m, except m = a negative even integer.
Writing n in place of m--1, it follows that

2 (n+2)(n+4) a3
(n+1)(n+2) 3!

n+2 702 _(n+2)(n+4) 2P

n+1 27 (n+1)(n+2) 3

=+ &e.

& + &e.

which is true for all values of 7, except n = a negative uneven integer. Several deduc-
tions from this formula are given in a paper “Generalised Form of Certain Series”
(‘ Proceedings of the London Mathematical Society, vol. ix., pp. 197-204, 1878).

§ IL.
Integration of the dyfferential equation when p = an integer. Arts. 8-15.

8. A particular integral of the equation

Pu W
gp U= 8
dx? an
1S
— paN(a®+ak
Y=oV @t ),

for, from this value of u we ﬁnd at once by differentiation

Pu_ o @EWP_
d R ah (a:2 +ah)¥
dPu — o 1a? 22?

awe = e, T (.12 +ah)i’
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whence
du 72 dPu

— 2,
—au=- .
da? o dh?

9. Let the above value of « be expanded in powers of &, so that

u= e+ =P L P hA+Ph? . . . +Pli+ Py, ki +&e.,

then
d*u d*P; ]
(;l’m—g-—aﬂuz ., +<W2+1._4(1,2P2.+1>hz+1+&0.’
72 dPu (i+1)i . |
2 an— ce +—;2——h”1-|—&c., :

and therefore P;,, satisfies the differential equation

d?u i(i+1)
— — U=
ds a~u Py u

Thus the general integral of this differential equation is

w= A. coefficient of Ai*! in expansion of e*V¢"¥=h

+B. coefficient of &i*! in expansion of e=*V@ +h

The particular integrals to which the different modes of expansion of e @ +al) Jead
will now be examined, and connected with the forms already obtained in § L

10. The coefficient of hi*1 in the expansion of e+ is equal to the coefficient
of Ai*! in '

1 —l—a(xg—l—och)*—kg(wg—l—wh)-|-g(w2+xk)%+g(x2+ach)9—|;g(w2+wk)%+&c.,

and the coefficient of A1 in (a*+-och) @D

_(n=H(n=3) ... (n—i—F) o .
- (i+1)! @,

Thus the coefficient of Ai*! in the terms involving uneven powers of &

(—1) . _. 1 o%? 1 atst _
=350 *%% Ces (z-——é)w ’ 1—;{_:~12~ e +(7‘:m 2121-—&0. =\U,
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where
_1 135...(2-1
X=%a<($+ ) pd. ((=H)=(=) ﬂﬁ_—gﬁ;—g

Of the terms inv‘olving even powers of a the first that contains a term in At is

(2a2+ i 'mz+1(m+h)z+l

so that the coefficient of Ai*! in the terms involving even powers of &

a2i+e o i+ a6 (1+2)(i+3) "
@l 1+<2 +4)'<l+2)96 Faire a0 ¢tk

%+ a2it2

, 1 a%? 1 ax
J— i+1 A _—
@i+ {1+¢+g 20 TG+ (+D) 2421+&0'}_(2¢+2)1

The complete coefficient of Zi*! in the expansion of e*Y@*+#? therefore

=AU+

. 2i+1
V= )‘{U"'( o ass 2i+1)2v}

=) {U—gV},

(2 +2)v

g being the same as in art 5.

11. Now :
et Vi +ah) — e, ea{ x/(z”-!-zk)-z} —e ®, 6“{ V(r2+xﬁ)+x}’

and we obtain other forms of the integral by ﬁnaing the coeflicients of A*! in the
expansion of er{v@**ah=s} and of es{v@'+eM*2} and multiplying them by e* and e

respectively.
It is well known that

{1—\/(1—4@'} —2”t”{1—|—nt—|—
n(n—4)(n—5)

and {1+\/(1—4t)}i1=2” {1— -4 ”(” D o é3+&c.},

n(n+ 3)

t2+%(%+4)<n+5)t3+&0.},

where in the secoud series, if n is an even positive integer the coeflicients of the

$n—1 terms involving ¢**1, #+2 ¢l are zero, and if n# is an uneven positive

integer the coeflicients of the 2 (n—l) terms involving e+, getd gl are zero.
h
Putting t= — i these formulee become

N e o n(n43) B _n(n+4)(n+5) 1
£/ (P ah)—a} --2nh {1—-72 4x—l— T A a0 4%3—}-& }

7 —3) A n(n—4 5) 17
{\/(mz_l_wh)+x}w=2nmﬂ{1—|-7l4*w+n(n2! )45;2"“‘ (Z /;)'(% )4;;4‘& }
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The coefficient of 271 in {4/ (w2+wh) —a}" therefore

_L (o 20 DEED) L Qi) 1 (DM, (i+2)...Q2i+1—n)
(,1,_*_1_%)1 4i+1—nmi+l—n 4i+lxi+1 (7;+1——’)’L)'

n 2 ILw7l,

and the coefficient of A% in {,/(a®+xh)+x}"

n(n—i—2)(n—i—3) ... (n—2i—1) 1  (=1) (i4+2—n)...(2(+1—n)

=2"x" e
(’H' 1)1 ity t1 T gty (’é+1)! :

,n2nw/1.

12. The coefficient of A*! in er{v@*+eh=s} that is in

14-a{y/(a*+xh) —a} +gjl{\/(902+a’h)-x}2+§{\/(w9+mh)——w}3+&c.,

is, by the last article, equal to

(—1) [ (42 ... 2 a®(@+2)... 2i=1), o
4iign a Ty oy P

ai+1
(G+1)!

o (i+2) ... (2i—3

31 (i~2)! .95 — ... (=)

j+1 i1
20T gt },

for, when 7 is greater than ¢+ 1, there is no term involving A**™.
This expression

a® (t— o i
”2 51 2i2i—1) 1)2%2"' = a s,
1) == 1))
)1;(@'__%). {i—y(i—1)} ! }’

=(—)3% "—‘—4%, x{ (¢+1)2w}’
17 ) i(i—1) a’®

—_-)\;lil—;aw-l-—*( ]> 21 e +(—

for the constant multiplier

10 (i+2). (29)! 185... (Z-1)

-_( i :(_)i(z L 20A2i+2) =(—=)345 .. (2it2)®

which is the quantity denoted by \ in art. 10.
The coefficient of %*! in the expansion of e ge{ Ve tah=2} g therefore =\P’.
13. The coefficient of i+ in es{v@+a+s} that is in

1+a{/ (2 xh)+x} +§~f:{«/(w2+xh)+x}9+f§{ V(2 4-xh)4x}3+&e.,

is, by art. 10, equal to
MDOCCLXXXI. 5 H
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1 1 . . at . .
(<'&+1))’4L+1x’+1l: {@+1) ... 232+500. .. (2t—1)3}2.2%7. ..

o 1),{1 2. (G 1)2 g
a22+2

(27,-{-2)!{( )( 7/+1) Ces (—-1)}(27:4_2)22”2%2”9

+ (2‘;?2*;)»[{(—2‘—1) . (—2)}(2z‘+3)2%+3x%+3+&c.}
i(i—1) a’x® (i—1) ... {i—(—1)} o'
B AR o il R o e oo s iy e

i B oiee, s ’i} (i4 1)(i+2) a%?
+(— )(2@+1), a2ty 1{1-{-71_1_1 +(%+1)(@+3) 2,+&c.}.

The coeflicient of A**! in the expansion of g ga{ Ve +al+a} iy therefore

a2z+2

)\R,+(z+1) (2@-{-1)'

and we have
q?it? _ , 221+ 1)

1 z .
N D@ =) Ess. it p ="

so that the coefficient of Ait!
. =MR"—2¢8).

14. Thus the three forms of the same integral which are obtained by the expansion of

a N (52 +xh) ax pad (2 +ah)—z —ax pal /(@ +ahH o
€ B e.e 3 e e

are

U—ygV, P, R’—2¢8.
Changing the sign of a, we obtain as the coefficient of A**! in the expansion of

—aq (22 +zh) —~azx p=~ai ¥ (@?+ah)—z ax p=aid V@ tal)+x
e B e e 5 er.e

the values —\(U+gV), —\R/, —A(P"+2¢9Q), giving the three equal integrals

U+gV, R, P+20Q
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Therefore
U—gV=P'=R'—2¢8,

U+gV=R'=P"+24Q.

whence

U=}(P+1), ‘Q:S—_—V:él—g(R'—P'),

which agree with the relations found for the case of p= a positive integer in art. 5.

If p is a negative integer =—i—1, then p(p+1)=t(1+1); we may therefore
replace ¢ by —¢—1 throughout in the integrals just obtained, and thus deduce the
system of integrals considered in (3°) of art. 5.

15. It may be observed that, since the series for {1—,/(1—-4¢)}" and {14,/ (1 —4¢)}"
in art. 11 terminate and recommence when 7 is respectively a negative or positive
integer, it is evident that the solutions in series of the differential equation satisfied
by them will present points of similarity to the solutions Q and P of (1). The former
differential equation is

2,
t(1 —4t)6‘%+ {(4n—6)t—n+1 }%——n(n— 1)u=0,

and its integration in series is considered in a paper “ Example Illustrative of a Point
in the Solution of Differential Equations in Series ” (‘Messenger of Mathematics,’
vol. viii, pp. 20-23).

§ TIL.

Transformations of the original differential cquation. Riccarr's equation. Arts. 16,17,

16. If the differential equation
d*u p(p+1)
d$—)2—a9u—— e (1)

is transformed by assuming w=a"7v, it becomes

— T =0, . . . .. (2)
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This equation therefore admits of integration in a finite form when p= an integer,
and the six particular integrals U,, V,, P;, Q,, R,, S, which are equal respectively to
xrU, x?'V, 2rP, x’Q, x”R, x7S are connected with one another, in the different cases,
by the same relations as those found for U, V, P, Q, R, S in art. 5.

If we put 2p=n—1, so that the differential equation becomes

%—7%*1 %—Z—oﬂv:ﬂ (3),

then the six integrals take the forms

U= n_—l-_z ?22—5”2 (n—2)1(7:4"} ;—,%L!-—(n—Z)(n—l-4)(az—f6) ;:gﬁz"‘&c"

Vl:xn{l+2—115 0%@2 W_%ZSE) %X"‘(mg)(ni@(nw) ;;;,6"‘&0}

S L Ky v T s R T

e {1 s g 2

e {140 HED0D 2 BB 0

B By et e T

The differential equation admits of integration in a finite form if n= an uneven
integer, and the relations between the particular integrals are the same as in art. 5,
viz., accented letters denoting the terminated series as before,

(1°.) m not = an integer,

P=R,=U,, Q=8=V,;
(2°.) n=a positive uneven integer,

' T 1,5,
P1=R1=U1='.%‘(P1 +R1 )> leslzvl——_?j;l(ﬂl _PI/) ;
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(3°.) n= a negative uneven integer,

1o,
, P1=R1=Ul=§g_l(bl —Qy), Q=8,=V;=4Q/+8/);
where
9= (=)

This is perhaps the simplest form in which the six integrals can be exhibited ; and,
having regard merely to the simplicity of the series and to the expression of the
manner in which they are related to one another, (3) should be preferred as the
standard form of the differential equation both to the original form (1) and to
Ricoatr’s equation (4), which is considered in the next article. The form (3) is that
adopted by BacH in his memoir (see iv. of § VIIL).

It may be ()bserved that if p=1, a positive integer, the differential equation (2) is

satisfied by v:;c X coefficient of 47! in the expansion of ¢=¥d*A and if p=—i, by
v=a X coefficient of #*! in the expansion of e?@+?; these results follow from §IT.

1
17. Transforming the equation (3) by assuming x=nz", it becomes

_2d?
2 n Zl—zi;_a%= 0,
or, putting n=-
d?
g;—cﬁzgq‘%= 0 (4)

Rrcearr’s equation in its original form is
dy
Z4-byt=c";
dz-l_ y >

it may without loss of generality be written

@ D e g1l
dz Ty =2
and, putting y=_- d— it becomes
dgﬂ U T D
d~;=—z =0,
Thus (4) is the equation derived from
Ei?/ +y9:a9Z27”2

. 1dv
by assuming y=. and 1t 1s convenieunt to regard it as the standard form of Ricoarr’s
equation.
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The six particular integrals of (4) are

a4 ateh abeh
- &e.,
U= 145000 T @ igt—1) T 2@ Dad g1 T
a*2? atsM 628
Vo=2 +2Q(2g+1) 29(2g+ 1)4g(4g9+1) +2q(29+1)4g(4g+'1)6c_7(6q+1) +&C.},

<q DEg=1) o0, (@=1)Bg=1)g=1) 55,
q(tz 1 9(9— )29<2q—1)wq 9(q—1)29(2¢—1)3¢(3¢— 1) e e ’

1—

11,y G+ DG+ @+ DG DGI+D
z{l Lot T e D20+ D T g D2ag 4 e+ 1 7 S

4 @mDEI=D) oo G=DC=DGI=D o, o

By q(g —1)29(2¢—1)3¢(3¢—1)

1+9(q 1 9(9 1)~c_7(2.cz—)

9+1 (q+1>(3q+1) (g+1)(8¢+1)(5g+1) o
o 0™ 2000+ 077 g+ D2gCet 130G+ ) 7 T

S,=z41

The differential equation admits of integration in a finite form if ¢ = the reciprocal
of an uneven integer, and, the terminated series being denoted by accented letters
as before, the relations between the particular integrals are the same as in art. 5, viz.

(1°) ¢ not = the reciprocal of an uneven integer,

P,=R,=1,, Q= Szzvz;

(2°) ¢ = the reciprocal of an uneven positive integer,

v 4 ’ 1 1 1 ’ ’
Py=R,=U,=4(P,/+Ry), Q2=82=V2=<;> ! ‘2'9—2 (Ry'—Py);

(3°) g = the reciprocal of an uneven negative integer,

1\I+2 1 , , , )
P2=R2=U2=<§> ! 2};(82 —Qy), Qu=8,=V,=1(Q,/4+S,);

where
_ (=)D 2
9o= i
12,8252 | Pt
N
The integrals P,, Q,, R,, S, were given by CAYLEY in the ¢ Philosophical Magazine,’
Fourth series, vol. 36, pp. 348-851 (November, 1868).
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§IV.

Special forms of the particular integrals in the cases in which the differential equations
admit of integration in a finite form. Arts. 18, 19

18. When the differential equations admit of integration in series containing a

finite number of terms, these finite particular integrals may be presented in another
form by commencing the terminating series at the other end

Thus in the case of the differential equation

a? 1
Ex% —a’u =&]—)—2+—>u

)

if p is a positive integer, the particular integral

17 »(p— _2_ _ p(p 1)...2  arlge!
””{1 aw+f’(l’ 3 27 A= p(p—3%) ... 3(p+2) (p—1)!
- p(p=1)...1 atzr)
+ )pZO(ZO—— oy p+1) p! }6
QP

=(= )(—p:—l)——{ —L 41 +p(p 1)1(294-1) (P+2) 3z

a2.702 ..

1
)b+ DbP+2) - - - 4P e
2rq? plp+1) 1 (p=DLp(p+1)(p+2) 1
(o D 1y .
(p+1).. 2

ax 24

a?

.. 2p aPxr

12...2 11
(=034 } ;
so that, if p = an integer, the finite particular integrals are

pp+1) 1 (p=Dpp+D(@p+2) 1
{1_ 2wt

2.4 Pl } o

(the series being continued till it terminates of itself through the terms all containing

a zero factor), and a similar expression derived from this by changing the sign of a
19. Similarly, if » = an uneven integer, then

wi(n-—v{l_(n9_12)<§17x>+(7@2_.12)(7%2_32)<8§;>2m(n2_

1) (? = 3%) (n 5?)
1.2

1
123 <8ax> +&e }e
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and a similar expression derived from this by changing the sign of a, are particular
integrals of the differential equation

dw n—1 dv
o T atw=0.
dx? ©  dz @v=0

In the case of RrccaTr’s equation,

—— 22%—27): O,
dz*

if g= the reciprocal of an uneven integer, the two particular integrals are

im0 #—1/ 1\ (F=DE%—1)/ 1 \2 (92_1)(3292—1)(5292_1)<i>3 }f}zq
a q{1+ q < >+ 9.29 gam) T 9.29.3¢ 8ant + & pe

and a similar expression derived from this by changing the sign of «.

These appear to be the best forms in which the integrals can be presented when
the equations admit of solution in a finite form: but they do not suggest the solutions
for the general cases when the letters are unrestricted. The series ultimately become

divergent when they do not terminate.

§V.

Evaluation of definite integrals satisfying the differential equations. Arts. 20-28.

20. It was shown by Porsson® that the definite integral -

e . bam s .
y:f e~ =gmdr . . . . . . . . . . (5
0
satisfies the RiccATr’s equation
‘ &y - .
Ta=m Ty (6),

so that the value of the integral must be of the form AU,4BV,, where U,, V, are the
same as in art. 17, and a®=m®, ¢=Lm; it remains to determine the constants

A and B.

* ¢ Journal de I'Ecole Polytechnique,” Cahier xvi. (vol. ix., 1813), p. 237.
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It is however more convenient in the first place to consider the definite integral in
the form

0 1 . aﬁ
y:Jl)wﬂ e T dw,

which is obtained by transforming (5) by the substitution x”=ax", for the integral (5)
thus becomes

o 2
[ 2 pale ’”_—olac
om

Comparing (6 h the standard form (4) of RiocATr's equation in art. 17, we have
t

) w

2 1 5 9
m=2q, so that —=-=mn, and m*b=a?
moq

Let bz*=0a*; then z=0b""a", and we see that the definite integral

o : . a?
?/=[ e e due
0

satisfies the differential equation

The value of this definite integral is therefore of the form AU,+BV,, where U,, V,
are the same as in art. 16, & being substituted for « and a put =2: viz., writing

1 (27)? 1 (2223
(n—2)(n—4) 2!~ (n—2)(n—4)(n—6) 3! +é&e.,

M=1 _n—iﬁ (2a%)+

i, 1 (242)% 1 (2a2)3
N_1+n+2(2a2)+(n+2)(n+4) 2! +(n+2)(n+4)(%'+6) 3! .+&c"

then

j e = AM 4 Bo'N.
0

Suppose n positive, and put «=0; we thus find

oo

Azf a e " de=1T(3n),
0
and therefore
[ @65 do=yr(n)M+ o' g(m)N,
0

MDCCCLXXXI, 51
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Transform the integral by assuming w=%; this equation then becomes
[ &S du= Jr(in)a~M+g(m)N.
Jo
whence, changing the sign of n,
j’ a e -5 r=3T(—3n)a"N+¢(—n)M
0

and it follows therefore that ¢(n)=3T(—4n).
Thus for all values of n (except, of course, n= an even integer)

[:x"-l ‘”""'”da;—lr‘(i»n)M+§I‘(—-~ N . .. . . . (7)
= p{i=iSe S S ey el
S R CoR e e e e TR
= e S S e & T
e { L e (S S e e 5 T

the series extending to infinity in every case.
The method by which the fundamental formula (7) has been obtained is open to

some objections. These will be noticed, and a complete proof of (7) given, in art. 28.
21. We have

D(—in)__2T(1—dn)_ 2 = 1 . _
T'(4n) “n T(@n) = " usin Inm {T(3n)}® since I(m)I(1 m)—sin mr’
and, if » is an uneven integer, this
= (—)¥+D 2m 1 =(— )1<n+1>_JL.=q
n {/miii. . i(n=2)P 123250, .. w2~ 7Y

¢, being as defined in art. 16, when o is put =2.
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Now, if » is a positive uneven integer, we have, by art. 16, U;4¢,V;=R;"; and
M+g,N is equal to U,4-¢,V, when « is written for x, and ¢ put =2 ; so that, if # is a
positive uneven integer, ‘

(n—1)(n—3) (2
(n—1)(n—2) 2!

® il —1
Lw I wolac:-%l“(%n){1+zv—~_~—1—(2a)+

(n—1)(n—3)(n—5) (2a) ' o
+(n—1)(n—-2)(n—3) 31 +&C.}e 2,

the series terminating at the term preceding the first term containing a zero factor in
the numerator.

Transforming the integral by assuming oc:%,, we find that, if n is a negative uneven

integer,

R - SN . n+1 (n+1)(n+3) (22)*
[, e Fdn=gr(—ymer {147 o)+ 0

+&ec. } e,

the series terminating when the first zero factor appears,

Thus, generally,
,[ wgcn_le—xn_:*:dw =
0

n—1 (n—1)(n—3) (242 , (n—1)(n—3)(n—>5) (2«) Y
P(%n){1+m(2a)+(n——l)(n-—2) 57 T —2=3) 3! +&c'}e i

20l

(n4+1)(n+3) (22 | (n+1)(n+3)(n+5) (22)° o
Dt it 20 s et D@+s) 3! +&c-}° . (8),

n+1
ol

+%I‘(—%n)a”{1+n+ .

if 7 is not equal to an integer: but if 7 = a positive uneven integer, the first series
continued up to the first term containing a zero factor in the numerator is the value
of the integral, the second series being ignored altogether; and if n = a negative
uneven integer, the second series continued up to the first term containing a zero
factor in the numerator, is the value of the integral, the first series being ignored
altogether. The rule may therefore be stated as follows : if neither series terminates
then (8) represents the value of the integral, but if one of the series terminates, the
finite series represents the value of the integral, the other being ignored ; a series
being supposed to terminate at the term preceding the first term that contains a zero
factor in the numerator.

The apparent change of form is curious, but the reason for it has fully appeared in
§ I, arts. 3-6. In the ‘British Association Report’ for 1372 (Transactions of the

' 512
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Sections, pp. 15-17) I gave the formula (8) with a brief indication of the method by
which it had been obtained; this method is substantially the same as that just
explained. As far as I know the general value of the integral had not been given
before ; although the value in the case of m= an uneven integer has been long
known. It is scarcely necessary to remark that in (8) # must not = an even
integer : this case is specially excepted throughout (see end of art. 1).

22. The case when n = an uneven integer is included in a general formula given by
CavucaY in vol. 1. of his ‘Exercices des Mathématiques’ (1826), pp. 54-56. He has

there shown that if
© © 1
— 2 — 2 i
PZi—J‘O x ¢(x)dw: in—jo X ¢<90 x)dm,

¢ being a positive integer, and ¢ an even function, then

(% — 1)@+ 1) +2 21—1
Q2i=P0+Z(Z;1>P2+ ¢ )%(Z:! o )sz Tt +él_1'"P2i—2+P2i s (9)

This is the case corresponding to a=1 of a formula proved by BooLt (Philosophical
Transactions, vol. 147, 1857, p. 783), viz.

_ a n=i(2m+1)(2m+2) ... (+m) ,
[ eg(e—")ae=x7" o a| weg@de . . (10)

Boorr’s formula may however be deduced from CavcmY’s; for, replacing ¢(x) by
¢(ax), we have

Qu=| a¢(av—2)as,

7

and this integral, transformed by assuming w:xz, becomes

1 ., fox ab
e Y
bzi,[o @ ¢< b x>dw’
in which, if we put a=b and replace a? by a, the expréssion subject to the functional

. Gy
sign becomes & —~*

* Tn the ¢ Messenger of Mathematics,” vol. ii., p. 79, I stated that CavcnY’s proof was not applicable to

. . 1 a ,
the more general theorem in which @~ was replaced by v The error was corrected in a paper

“QOn a Formula of Cavcuy’s for the Evaluation of a Class of Definite Integrals” (‘ Proceedings of the
Cambridge Philosophical Society,” vol. iii, pp. 5-12, 1876); this paper contains also the theorem,
corresponding to CAUCHY’S, in which ¢ is an uneven funetion.
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To deduce the value of the integral f a¥e™ "#dx from Boorr’s formula, let
0
P(x)=e""", then
2i—1
R

P,= j e dw=AT(i+1) =1 /7335 . .
0
and therefore the coefficient of ai™

_Am @2m+1)(2m+2) ... (i+m)

13 2m=1_«/m (i+m)! 1
) (i4m)! 229 T2 (j—m)lm! 2
Thus
e TR @ ds e
L dx CrG—nin 2 +(z Zoyal 2 T 2%} - (1),
whence .

f: e dx—‘/” ; { . +z(zT1)(2a> +(i—1)i(i211)(i+2)<§1;6>2 + &c.} e~ . (12),

the series being continued till it terminates of itself.

This formula is in effect that given by Cavcmy (‘Exercices,” loc. cit., p. 55) for
the evaluation of the integral. It had however, as CaucHY himself remarks, been
previously published by LEGENDRE in vol. i, p. 366, of his ‘Exercices de Calcul
Intégral’ (1811). LEGENDRE, whose method is quite different to CaucmY’s, adds
that EULER, in vol. iv., p. 4155 of his ‘Institutiones Calculi Integralis’ (1794)
mentions the integrals

® 1+t ® 142
J x e e dw J a e o o,
0 0

which correspond to the particular cases v=—1 and +=—2 of the integral in (12),
as apparently not admitting of evaluation by known methods ; and he gives their
values.

If in the series in (11) the terms be written in the reverse order, we have

i g v/ (20)! N 1(1—1) 2%? Al o Z} —a
JO do= 5 o |12 2 iy 21 TEpit 4pe

which agrees with (8) when n=2:+41, since

v 1.3 20—1 24)1
e A i

* ¢ Supplementum V.” ad tom. 1, cap. viii.
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Transforming the integral in (12) by assuming x= %,, it is seen that (12) is true also

when ¢ = a negative integral ; so that this formula is true when ¢= any integer.
The same transformation shows that in general, if ¢ is an even function,
0

Jo ac‘zi‘ng(w — g) dr= a“%“lj w%ﬁ(w - g>0lx.

Putting 20=n—1, the formula (12) assumes the form

J : wn—le-xa_gdx;T_%a-é(n—l) { 1+ (n2—12) <%> +(_”2"‘12('____M< > +&e. } e

@

0

which is true when n= an uneven integer, the series being continued #ill it termi-
nates of itself.

23. The investigations of the formule (9) and (10) given by Cavcuy and BoorLs
are only applicable in the case of ¢ an integer, and do not indicate what the formulae
become when 1z is unrestricted. A method, however, which I have employed in the
 Messenger of Mathematics’ (vol. ii., 1872, pp. 78, 79) to prove BooLr’s formula, and
which depends on direct transformations of the integrals, leads to the general theorem.

We have
© ® Va
f . x”¢< —;—Z>0lw=jww"¢<w—g>dx+ j‘o x”¢< -—Z)dac;

. . . 4 . .
and if we transform the second integral by assuming x:‘é, , then, since ¢ is an even

function, we find that the original integral
® anrtl
= jva¢< _7> {x"-l— ”H}
—J_ o ﬁ' _El n+1_an+1
Tt IJ Wqﬁ(x a:)da:[w x"“}dm'

Now transform this integral by assuming ac«-—%:v; we thus have x=%{v4/(v*44a)?,

and, taking the upper sign, the integral becomes

R e e e e

If n is an even integer, the quantity in square brackets

_ {fv+\/(;;2+4a)}n+1+ {v—\/(gg+4a)}”+1

1/”

_,Un+l{1+(n+1) 2+(7l+1) —2 a? +(n +1)(n o) n-—-4) :is . —{—(n—l—l)ﬁ},

this expression containing 4n-1 terms.
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Thus, if n is an even integer, we have
]’ m"¢<x—g>doc=rq5(q;) {fv”+ (n— 1)0&1)”‘2+(-w_—2)@:3—)a%”‘4. .. +a’lf”}d'v,
0 @ 0 21

which agrees with BoorLr’s formula. Bat if » is not an even integer, the expression
in square brackets when expanded contains an infinite number of terms, and putting,
as before,

P,=| :x"q')(az)dx, Q=| :x%(x——g)dm,

the general formula is

Q=P,+(n—1)aP, ,+ 20D pop @I DO=I) 9p 4 e, ad inf:

ta P, )P, , ATV gp ke ad i

24. This formula involves infinite terms unless ¢ is such a function that the
integrals P,_y, P,_y, . . . P_,g, P_,_; ... are all finite. This condition is not fulfilled
when ¢(x)=e"*", for [;a"e~""dx is infinite when n= or < —1, so that we do not obtain
by means of the formula a demonstration of the equation (8). If however we replace

[ e da by T <~—- 1> in all the terms, whether the integral be really infinite or not,

we do in fact, as we should expect, obtain (8). For, putting ¢(x)=e""", substituting
gamma-functions for the integrals, and writing n—1 in place of n, the formula gives

rx"—le—x”-%;dxzé{I‘(%n) +n—gar@n—1) +"=20=D grr(gn—g) +&c.}e‘2“

0

+?1200”{I‘(—%n)—(n—l—Z}aI‘(—%n—1)-l-%@ T (—4n—2)+&e. }e 2

— (n—3)(n—4) (2a)* | (n—4)(n—"5)(n—6) (2a)’
= TR i e e Tl .8
N (n+3)(n+4) Q) | (n+4)(n+5)n+6) (2m) .
F3l(—3n)a {Hm( )+(n+2)(n+4) 20 T(a+2)(n+4)(n+6) 3! "'&C}e :

The coefficients are readily identified with those in (8), for evidently

(n+r+1)(n+r+2) ... (n4+2r) (n+1)(n+3)...(n+2r—1)
n+2)n+4) ... n+2r) —  (n+1)(®n+2)...(n+7)

This process, regarded as a method of obtaining the formula (8), is of course unsound,
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and could not be rendered satisfactory without careful discussion and development.
Such substitutions, however, very frequently give correct results, and it is generally
interesting to examine whether, in any case that arises, the result so derived is true or
not. In this instance also we thus obtain two new forms of the expression forming
the right hand member of (8). '

25. Transforming (8) by the assumption m.—;qﬂ%, putting m:%, and writing « for «, it

will be found that
L 1 =2 (m—2)(3m—2) (20)° 1 o
Le dv—I‘<1+m> {1 (2 )+(m_2)(2m_2) Y +&C.}e 2

1\ 2 m+2 (m+2)(3m+2) (2a)? o .
—I‘<1— >a {1—!— ( )—|—<m+2>(2m+2) Y —}-&C.}e 2, . (18);

where, as before, if either series terminates through the presence of a zero factor in a
numerator, the terminating series represents the value of the integral, and if neither
series terminates, both are to be included. When one of the series terminates, that is,
when m = twice the reciprocal of an uneven integer, the formula may, by taking the

terms of the series in the reverse order, be written
© 7 1 2__92 2 __92)(32,2 92
oy AT Ly m*—=22/ 1\ | (m?—=2%)(3%m>~2%) Y
[06 vdv= m {1_ m? <16a>+ m3.2m? 16 &C' ¢

2
Putting v=amx and a?*=a?B?, (13) becomes
(20‘B)+(m~2)(2m—2) 21

I: e ‘”'”Ol./c—I‘<]+ >oc m{
{2 o D

(m—2)(3m—2) (2“6)24_&0'}6—2:13

If for example m=2, we have the well-known result

[Ce=Fau=r(g)amieme="Y e,
0 Qo

26. The definite integral
[ ® cosbx

o (az +x2)n @

has been evaluated when 7 is a positive integer,* the formula in t’his case being

* See ScELOMILCH, ‘ Analytische Studien’ (Leipzig, 1848), part il.,, p. 97, and Oreire’s Journal,
vol. xxxiii., p. 273, or CaTALAN, ‘ LiouviLLy’s Journal,” ser. 1, vol. v., p. 110.
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This result may be readily obtained by differentiating both members of the equation

— p—ab
o (@®+aPyr =00 °

r cos bz ar

n—1 times with regard to a®: see infra, art. 31. I now proceed to investigate the
value of the integral when = is unrestricted : it is to be observed, however, that n
must be positive and greater than unity, for otherwise the integral is infinite in
value.

It is easy to prove that the integral

7 cosaf
u=at j e %

satisfies the differential equation
d*u »p=1)
=T
for, by actual differentiation,
&

— P(]:a l)u 2})9{,},“‘ (PP —apg?) 22 _cos af A

(x2 + E2)p+2

and by a double integration by parts we find that

" _cos af _ 2 cos a§ .
mL (x2+gz)pd§—a2w f (22— £2—2p¢?) (x2+§2)1’+2d§'6

Thus the value of the integral r@—:—_—:%%ﬂ d€ must be of the form «7»"1(AU+4BYV),
0

where U and V are as defined in art. 3, and A and B are constants to be determined.
It is however more convenient to avoid the determination of the constants by
deducing the value of the integral from the formula (8) of art. 21.

In the ‘Journal de I'cole Polytechnique,” Cah. xvi. (vol. ix.), p. 241, Porssox has
proved a formula which, after some unimportant transformations, may be written

r e - olm— T(n+ l)j cos 20w
0

\/,7,. (1 +x2)n+1 €3

Porssox’s demonstration holds good for all values of n such that the integral upon the
right-hand side of the equation is finite. Putting n—1. for n and transforming the

right-hand integral by assuming x:%, this equation becomes

* ¢ Quarterly Journal of Mathematics,” vol. xii., p. 130.
MDCCOLX XX 5 K
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Iw J,wcos (%) .

0 bﬂ .
W= —x?=—_z —_— g 2=1 .
%" TE dp=—a
-‘1) Nl (PP ’

whence, replacing %b by b,

©_cosbw — ﬂ —2n+]v“.Qo =2 —z’-—%;é;
IO (a2+x2)n ’x—F(n)a Ow e dCU . . . . . e (15)

b 2n—2 2n—2)(2n—4) (ab)®
_La—znﬂ[%r(n—%){l+2n_20&b+§2:—2ig22—3; (O;I)

"~ I(n)
(2n—2)(2n—4)(2n—6) (ad)? + &e. }

(2n—2)(2n—3)(2n—4) 3!

ab\¥—1 2n 2n(2n+2) (ab)?
+%P("'”+%)<—2‘> {1+ 5,00+ on(n+l) 21

2n(2n+2)(2n+4) (ab)? .
+ 2n(2n+1)(2n+2) 3! + &e. }]e b

VT o+ 2n—2 @2n—2)(2n—4) (abd)?
_%r(n)[r(""‘lg a 1{1+2n—2“b+(2n—2)(2n—3) 21 +&C‘}

2n 2n(2n+2) (ad)? _
™ ooy 2 T He ”,

+T(—nt-HAD 1+
which represents the value of the integral for all values of n greater than unity. If
n is a positive integer the first series terminates through the presence of a zero factor
in a numerator, and this finite series is the value of the integral, the second series

being ignored. _
If n is a positive integer, then, writing the terms of the series in the reverse order,

(n—1)!  (2aby*!
@2n—2)...n (n—1)!

2 2

® 08 b T _
R R

| (n—1)...2 (2ab)y»—*
+(2n—2) (D) (=21 +

_ VT T (=) —9) - . -%-.«/72”_2{1_'_%(%_1) <271¢b>

n—1 —a
= 2(2ab)+1}e '

T I'(n) ar 2n—2)...n
(n+Dn(n—1)(n—2)/ 1 \2 @n=2)1/ 1 \»=17 _
+ 21 (271:) v T o) <§ﬁ> }e ’
_m 1 n(n—1) 1\  (n+Dnr—1)(n— [1\? .
TT(n) 2 @ {H" 2 (ab>+ 24 <ab) +&C'}e "

which agrees with (14).
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27. In a similar manner we may obtain the value of the integral

r 2 sin by »
o (@@ +a?)y”

which is finite for all values of n greater than umty For, differentiating (15) with
respect to b, we have

® @ sin bz VL SR
[0 (a2+m2)ndx— %F( ) 2n+3bj. e R T /7 R (]6)

2n—4)(2n—6) (ah)*
%i}/“ | rn—a _%+3{1+2n 4“b+22z—4;222—5; (azr) +&C'}

oIn—2 2n—2)(2 ab)?
H0(=nt+9) )%—3{14'2% 2ab+(25@n2)(;z%)1)(2? +&e. }:l -,

where, as before, if the first series terminates, the finite portion of it represents the
value of the integral.

If n is a positive integer, and the terms of the series are written in the reverse
order, we find

“xsinbr ,  w ot w 1 n(n—1)(n—2)(n—38)/1 .
,( 0 (@ +w2)”dw_2”(n— 1)t a1 { 1+ 2 <ab>+ 2.4 \ab > + &e. } 5,

which is a known result (ScHLOMILCH, ¢ Anal. Stud.,” loc. cit., p. 97).
It follows at once by combining (15) and (16) that, for all values of n such that the
integrals are not infinite, viz., if n= or >1,

r’ z sin bx _1br’ cos bx ds

0 (a2 + xa)[:l (a+ 2P

It would be strange if this equation were new, but I have not met with it anywhere:
it is readily proved in the case of = an integer, for

o
—2a, %M: 2 (bmem) = —fube,
and
r cos bz 4 T o
o *+a? 2a
whence

f 2 sin bz dx:%zb‘[ cos bxdw,

o (@® +22)? o 0P+

which, differentiated n times with regard to a?, gives the relation in question.
5 K 2
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28. The method by which the formula (7) was obtained in art. 20 is not satisfactory
for two reasons, (i) because the integral [ya" '¢™*dx is infinite in value when n is
negative, while the gamma-function, which is supposed to satisfy the equation I'(n4-1)
=nT'(n) for all values of =, is finite when n is negative, except when = is a negative
integer, so that we are not entitled to assume that we may always replace the integral
by the gamma-function, and (i), because it is assumed that we may change the sign
of n in the equation giving the value of the integral. The following demonstration of
the formula (7) is, however, I believe, quite rigorous.

The gamma-function is supposed to be defined by the equation I'(n)=[;z" le~*dux
from n=0 to n=1, and by the equation I'(n+1)=nI'(n) for all other values of =.
This is in effect the definition of the gamma-function generally adopted in analysis.

We have seen in art. 20 that

00 ‘zﬁ
=| & e Pdx
Y
0

. . . . Ay n—1dy -
satisfies the differential equation - ——— —*—4y=0, so that y=AM+Boa"N; and by

do? a dx

a simple transformation of the integral, it follows that

[(@e= fdo=AaHABEK, . . . . . . . (1)
0
where
_ 1 1 (223)° 1 (2ap)
H”_l—n—Z(zaﬁ)+(n——2)(n—-4) 21 (n—2)(n—4)(n—6) 3! +&e.

1 1 @upp L (28"
R=14+7508) + 35070 20 T aenardmrs s T

Suppose 7 to be intermediate to 0 and 1. Put =0 in (17) and we have [Ja"e™*"dx

=Aa"¥, whence A=1T(3n).
Now by actual differentiation of the series represented by H, and K, we find that

dK, 28

d
— — 1 —in—1 —
CZ‘(“ %ﬂHn) - ——gna an Hn+2, da '—‘% + 9 n+99

and similarly

dH, 2 d [ e \ — 1o et
dB —_ _n_ZHn—2’ dB (B Kn) - 2”18 K"’"‘z'

. 1.
Transforming the integral in (17) by assuming #=_, it becomes

® | 2____‘3; 1T 1
J‘ %—/L— l(’/‘—ﬁz “’dx: Aa—an_‘_ BBMK;L ;
0
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whence, differentiating with regard to S,

* gl ‘ d

J‘ an ) Bz Polp—=—Ao"¥ —B—“<18 'K )
0
Qo in+l
= n—2 AH, ,—4n8"'BK,_,.

Now —n+-1 lies between 0 and 1, and putting a=0, we have

[(ammrterse =Jgmir(— k- 1)=— 4B,
giving
=
B= —%F(—%n-}- 1)=4r(—%n).

Thus, if » lies between 0 and 1, it has been proved that
eo n_E N ’ .
[ da=gr ()T, +A0(— 4B,
0

and this equation can be readily shown to be true for all values of # by differentiating
both members of it-any number of times with regard to « or 8.

For, differentiating with regard to e,

[ateme—bdo= 40 (). b a1, = 4T — )
0

=0(1)a T, o AT (= =18 K
and, differentiating with regard to S,

@ Qa—intl
jomn—3e-w*—-dm—lr(2n) ~ - H, ,— (= )ik,

=10 (An—1)a "H, 41T (—Ln41)87 1K, _,,

If, therefore, the formula (7) is true when n=v, it is true when n=r4-1; and it
has been proved to be true for all values of n between 0 and 1: it is therefore true
for all real values of .

It may be remarked that whatever value n may have, the integral is never infinite :
so that the differentiations with regard to « or 8 are always permissible.
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§ VL

Symbolic forms of the particular integrals in the cases in which the dyfferential
equations admit of integration in & fintle form. Arts. 29-42.

29. It has been shown in art. 26 that

® cosaf '
u=m+1f (2+52)p+1d§ e e e e e (18)
satisfies the differential equation
d?u +1 '
Timew=PIE ),

Now

® cosaf p d (7 cosaf
L (z?+ E%r+1 df— “‘ d J. (22 + E%)? f
and therefore, if p is a positive integer,
? cosaf 14 cos a &
,( (w® + E7yptL dé=(=)"p 21” <m dx> .( o+ fzdf
T [1 d\re*®
‘_( ) pr217+1 (x dx) z °

The complete integral of (1) is therefore

1 d\» C16% 4 c e
u—wﬁ+1<m d]') <”l‘ﬁ£‘g*—-> e e e e e e (19),
1d e ‘
and, since - o e = 0 this result may be written also
1d\»
'—m/”*l(; E—) (creFepe™™) . . . . . . . (20)

Since the differential equation (1) remains unaltered if —p—1 is substituted for p,
it follows that the complete integral of (1) may be expressed also in the forms

1d 0,6 + €07
=37 e
v= (i) ()

u=x"7 (; j)ﬁp (c,e@+cpe™).

and

30. Putting u=a"7v, we see that the complete integral of the differential equation
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v 2p dv 9
d? zdw v=0,

when p is an integer, either positive or negative, is given by any one of the formule

1 d\r
v=g%*1 (i d—x> (cre™+cye™™),

-

8 |
gl

>—p (c1e+cpe™™),

7J=:JGQP+1< )p < €,6%% 4y~ >,
x

< >—P -1 ( 016" + ey )
v= .
x

1
Putting now xz=mnz", where n=2p+1 and q=;b, the differential equation becomes

BiH RIR
SIS

E;;—a%”‘%:O Coe e (a)s

and the integrals take the forms

D\l o ey
'v::z<z“25’”;l‘z (crer Hee <),

9 a\r c egz +c.e Ezq >
v=zp(z" %t~ 1 2
< dz ( 2 g
I AN e N Y e—gzq
— 2+1 = 1 2
o= () < )
If p is a positive integer =1, so that g=~~, then, from the first and third forms,

v=2z a1 = (c o e e_&zq)
= dz 1 20D

-. Cl ; "Z‘zq —C_qu
pe=r| -2+ Z 001 e € .
dz o

or
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and, if p is a negative integer =—¢—1, so that g= —5; _1|_1, then, from the second and

tourth forms,

or
a a
. ~ 21 —_p
v=(z-2+1 AN ot 4o 17\
dz 2

31. These formulse may be readily connected with the series-integrals found in § I,
for, comparing (20) with the series P in arts. 8 and 5, we see that

1 d\i+l _ L. i =) @ (i~ 1)(i—2) @
a+1 AL — @ —_— PSR SO A SO AR ax
w+<x dx) cr=Aw {1 i) 21 Ti—h)i—1) 3! +&C'}e ’

where A is a constant. Putting t—1 in place of ¢, this equation becomes

x dz

AU i—1  (i=1)(i=2) &% (i—1)(i—2)(i—3) a’s
< > er=Aa 1‘{1 S R ey T A ) B Tt }

and, observing that the coefficient of z~%e is ¢, it is evident that

L D). 2i=2)
Zz—l

A=(-)
Writing the terms in the reverse order, as in § IV., we find

<1 d> =(g>i{1_¢(i-2-1) _14+(¢+1)¢(@'—1)(i—2) %_&0_ }e‘“. .’ (21);

x dx az 24 o’
that is, on replacing « by 4/,

2

which is a known formula (see, for example, ScHLOMILOH'S ¢ Analytische Studien

(1848), p. 86).
The formulee which result from comparing the solutions of RiccaTr’s equation (4) in

arts. 17 and 30 are

d\itl e
2(z7%—) =
dz

q(g=1)29(2¢—1) . . . ig(tg—1) q— G=DBg=1) ., B gzﬂ
(=) (—DBg—1) ... {(Zi—1)g—1} {1 Q(q-—l) +q(g-—1)2g(2g——1)a e &c.}e (22),



EQUATION AND ITS TRANSFORMATIONS. 801

. 1
if Q—gﬁ, and

i+1
2%+ EZ_ 6% M
dz

. D29(2g+1) ... ig(ig+1 L
(=) dg 10290 +1) . - dglig+1) { g+l az!+ RARIC AR 2227—&0.}@” (23),

@+ DG+ - A{@=Dg+1F T T @+ e T g Dag+1)2
. 1
o=—r
In the case of g=; 1 we have (2¢41)g—1=0, and therefore

241’

(21—=1)g—1=—=2q, (2t—=3)q—1l=—4q, ... q-—1=-—2ig;
also .
Wg=4—3¢, 1g—1=—}—3q, so that ig(ig—1)=4(¢*—1),
and similarly v
(t—=1)q{(t—1)g—1}=4{(3*¢—1), &c.

Thus the g-coefficient which multiplies the right-hand side of (22)

_@=DE¢ -1 —-1) . {(2%—1)%—1}
(— )8’92909 g

and, writing the terms on the right-hand side of (22) in the reverse order, the formula
becomes

oy AN Ly =1 U —1)(‘”9 —1) ~za
” 2+1 — b1 N TN L T
emy) e = QR ()T () e e

viz.

A\t S 2 P11\, @=DEF=D (1
—2¢+1 2 L z 3(1—-9) A SVA Sttt SR St
z(z dz> rert a qz {1+ q <8az‘l + 9.2q Sasz) +&e. per”,
1
where g= i1

Treating the formula (23) in the same manner, we find

d\=1le _ 1 (P—1)(3%*—1); 1 \? Yo
—20+1 2 |5 B A-0) M AR L T oq "
<z dz> tat=a qz {1+ <8az7>+ q.2q (8@%) +&e. j €

Whgre I=—5 7

The right-hand members of these two formulee differ from one another and from
the last expression in § I'V. (art. 19) only by the powers of « which occur as factors in
the two former expressions.

MDCCCLXXXI.
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32. It follows from the forms of « in art. 29 that

xz+1 1 d ear:Ax—i _]:.(_Z_ _iem"
x dx z dx

and it can be readily verified that A=a*"!, so that we have

i+1 ; 1 d\-i
.%"“<—1—£l—> e‘=a2‘+1<-——> e L (24).

x dx x dz
. . . 1 . .
Transforming this result by putting cc—_:éz‘/ (¢ unrestricted), it becomes

) d\itl ¢ A\~ @y
2+ Dy y—2g+1— eq ___a2z+1 =2+l o7,
dz dz

1 . .
If now g=_ -, this may be written

2+1°

g+l -1

(/ 1 =2
2 z—29+].d 2 0¥ — g z-Qg-l—lE% e
dz dz

and, on putting q:—ﬁ——lﬁ, we obtain the same result; so that this formula holds

good whenever ¢ is of the forms +-— 57 +1

It follows from this theorem and from the two formulse at the end of the last article
that

g+l 1—* 1 (1—=g)(1=3%Y)/ 1 \? o
—qa A0l 1 — — ) —
=auz 1{1 o Som &e. ped,

+1 q—1
A\ % d\' ¢
z<z-—2g+1d 2y eq —_ aq Z-Qg+1d_ 2q eqz"
2 z

L q Sazt q.2q
where =+ %+ 7
The relation (24), or, as it may be written more conveniently,
1d /1 d\i+l .
SN el S 12 e g 20+ 1 a2
<x (Za"> (\m dv> er=a¥le . . . . . . . (25),

admits of being established as follows.
Suppose e expanded in ascending powers of z, and consider the term in 27 : we have

i+1 )
GL %) wr=p(p—2) ... (p—2i)er==,
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and
1 aN o (LA , » . »
<0—C %> L+, g2 9:(; d-—g;)ﬂa” l=(p—1)(p—3) ... (p—2i41)ar"?,

so that

1 d\é .. /1 d\itl ' ‘
<i?%> :}627«+1<;; %> mP:p(p—l)(p—Q) e (p_zl)mp—zz

d\%+1
=(z)

1a\e . /1 d\+l d\%+1
D) il D [ X
<a: (lx> v <@ dz) ¢ —<dw> ¢

— a2i+ 1 e,

and therefore,

The preceding investigation shows also that, if ¢(x) denotes any function of x, then

Gafefia) so=(2) "o - e

for this theorem has been proved to be true when ¢(x) is of the form Ax*4 Bal+ Car
+&ec. ; and as it merely asserts an identical relation between the derived functions of
¢(x), it must hold good universally, since the truth of such a relation could not be
dependent on the fact of whether ¢(x) was or was not expressible in any particular form.

33. The general property upon which the theorem (26) depends is that the symbols
of operation

d d
1—a_—qpe 1—=F——pf
X c.
R dz "’ &

are convertible as regards order®; that is to say, operating with such symbols upon
¢(x), the result is the same in whatever order the operations are performed. This is
evident, for

”l’“d‘c,l;x“-x”=(p+ a)a,

so that the result of the operations upon «?, and therefore upon ¢(x), is independent of
the order in which they are performed.
Now the left-hand side of (25) multiplied by a%*? is

Lo d R A d Lod d . d
.’)32”1—93_21..%24—1*—%_2“-2 . x3__x—2 (,UQH'Z—‘.’E u 1.9322‘9? Qu+1 . x2___m-1 (E(]S(%),
dx dr d dw dw da :

#* See CAYLEY, ¢ Proceedings of the London Mathematical Society,” vol. viii. (1876), p. 51, and also
¢ Solutions of the Cambridge Senate-House Problems and Riders’ for 1878, pp. 99, 100,

bn 2
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and, writing the operators in a different order, this expression

Lo d . L d o d . d
%2 21 241 =0 2~k —~1
=X X L X X X e e s X XL

—x22+9<£ >2i+ l(l)(m)'

This investigation of (25) is in effect the same as that given in the last article, but
the form in which the process is presented is somewhat preferable.

Denoting for the moment the operator 0(;“”(%90‘” by [#], then

. . 4 d '
Iwa] [OL—{'—Z)] . [0&+(@"“1)b:|(f)(. ) x1+ﬂd_x—rz ’I'l+”+7}%’ﬂ_” 1 .. 7.1+(r+(7 1)&;1% a—@G—=1)b (f)(.ﬂ

:%(/-—/; fBb+] ¢< )
¢ (]fL (= 1)//

Also, writing the operators in the reverse crder,

[ad+G—1)D]. . . [a+b][a]p(x) =zt +rti-ms a P el xl+r/+b£Z_J/.—(t-7l'$1+ﬂg,x—a.¢<x)
r

(Za v
— i ,)C—b+1 ‘7’(‘”)'
de) o
Thus
xa—i; x/)+1 (k(fi)_ —_ a+zb .’L'—b+1 ¢( )
(ZJ 7=a+(z-1)71 d{)} a0 5

and therefore, replacing $(2) by ¢(x),

a—r(z-—l)il

L e Gy 7 e U IR 8

ax

or, writing i1 for 1,

5+1(Z i o 141 an
atios ) ple)=atH et () L (28),
34. Putting b=-—2, and gb(fc) zp— and e respectively in (27) and (28), these
formule give
1 d\é e= 1 3(Z i euw
- — ~—:= [ R —
x dax & da ) %1

1 d i+1 1 d \it1pa
P — wS . N
v de 2\ qp) 0
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1d Hle‘”’ o Ld\iew 1 [ od\itlew g [  d\iew
- — =g - =) —=——| —=—| =) —.
@ dz zde) @ 2%\ da ) xR dg ) 2%l

The complete integral of (1) may therefore be written also in the form

whence

1 d \¢ €080 o0
— 3 & 1 o
u".@"“l(wdw) < 21 > e e s (29
or in the form
1 d\itl/e 04 g, g0
— 3 & Gy¢ o
u_w”3<wdm> < 2% > R (30).

The first of these solutions, viz. (29), is that given by Boorr in the ¢ Philosophical
Transactions’ for 1844,* and in his ‘Treatise on Differential Equations,” chap. xvii.,
BooLrs process is as follows : he shows that

u=e*D—1)(D=3) ... (D—2i+1)
where

d 6% + o™
D denotes P x=¢’, p=-t—2
i n

and he thence deduces that
u=e"? e De~?0.eDe 3 . ., Hi-DDe~Ri=10

= DX )i~y = 1 <w3 a >z<ﬁgf_+02_e—“>

2Tl dw 21

But if the factors are written in the reverse order, we have

w=e¢"*(D—20+41)... (D=3)(D—1)v
— e, gD~ 3])e=% " D=0 g

=e(i+1)e(e—29D)ie—o,U
— i+l /1 _CE ' gle_m,ﬂ?ejf
z da @ ’

which is (19). BooLE does not seem to have anywhere alluded to the connexion
between his own form (29) and the form (19), or to have remarked that the latter was
obtainable by his own method.

Putting b= —2¢ (¢ unrestricted) in (27) and (28), we find

* “.On a General Method in Analysis,” p. 252.
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@ @,

4 % ~
z—%ﬂi e __ 1 z29+1‘_l, ¢a
dz 27 22i9+2q dz zﬁi9—2q 4

o

a i+l p g%
2—t1 4 eqz —_— .1 z2q+1f£ e_q_ .
dz z2zq+4q dz 2Rig ?

so that the solution of RicoaTr’s equation may be written also in the forms

. . @
'u,—--l- 21 4\ cleq +ege i
T dz 23 ’

tq 9
w2

u_..}_, z2g+1£l_ i 0(’4 +oe T
T dz e 5

. 1
if g=g; 4y ond
d e
/M=Zl—f/ <z2f+1d’> {73Q+1(c e{, +07e qz )},
—1-3¢ ,-29+1_d. 1 g1 ‘fzq_’ , Gt 3
U==z Z s {4 (cleq bcye e ))’
. 1
fo=—g77

35. Boorr’s form (29) of the solution of the equation (1) can be obtained also from
the definite integral (18) in art. 29 ; for we have

u-_-wpﬂr P84S _ g ——1[00_‘139_‘@*0;5 if b=ax"2,

(1;,2+ E2)p+1 (1+b§2)p+l
17\ cos af
=z 1<( d“) db[o g™t

=2j1 ,x_p_l[a da)i%]pj fis]?;olf, when p is a positive integer,

1 * 2d 1’[«%

—_l1l_ —-p—1 —
277.}) i [Ua Clo&) dbj 7
1 ANP/[® , \& &
=l el = —_—
Tt <db> UC@ Vb

1 AN 1 =
:—%ﬂ"é)——lx P 1((_Z_b> {Z)ﬁ@[’ 1)6 M{)}

. (___—.1,)? Pl <x3_¢£>21 E:a__m_
4
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leading to the complete integral

x2p—l

d\V e oo™
dz

U= oc‘?"1<oc3~
It will be observed that

d cos a§ E?cos af
dbjo @ +b’g’2)1’d§_ [ (1+b§2)f’+1d§

both integrals being finite for every positive integral value of p, and that the second
integral when integrated with regard to @ between the limits  and o

Esin (= §) “ Esin (af)
f (1+og2)pr+t dé+p jo (1+b‘s'2)f’”df'

Esinaf
(1+b’g‘2)l’+1d§

diminishes as o increases, and, in the limit when « is infinite, vanishes. A similar
remark applies to the second integration with regard to . The above process does not
therefore involve the assumptions, sin o =0, cos o =0.

36. Poisson’s theorem quoted in §V., art. 20, viz. that the deﬁmte integral (5)
satisfies the differential equation (6) shows that RiccaTr's equation

The former of these two integrals is zero, as it can be shown that .(

2
%ﬁ:—agzgf‘%&:O. N )

is satisfied by the definite integral

a2z

u=J. eI Gy L . L (31).
0

- _-oc and transforming the integral by taking M =ox'?, we find that

Puttlng - 4—

1 1 po 1_1 _ ’—i.‘;
w——oﬂf-{ wl e T d,
q 0

which, if 1—1=2,
7 d ; poD 1
—_ i O o=
( )oc Y<du>j e dx

1 LA\ eV 1 L o i+1
e Ny R M — +1 2 ~2Ma o
_q( )a ! 2 <da> Ve ( )z ! 2 <0Zoa> € ’

so that the differential equation is satisfied by

d\i+1
zc::z(—(};) et L L. L. (32)
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Similarly, by transforming (31) to the form,

1= *1—-1 —i—G
u=—J 2 e *du,
qJo

we find that the differential equation is satisfied by

A\t .

u—<da> e L Lo (33),
if T —1=—2—2 that is, if g=—5—
, 1= —2i—2 that is, if ¢g=—57.

The formulee (32) and (33), on substituting for « its value in terms of z, lead at once
to the solutions given in art. 29.
This method was applied by PoissoN* to show that the equation (4) is integrable
1
20+1°
The formula (25) of art. 32 may be easily deduced from the equation

when ¢=+

@ ]
.[ ,""""‘;aedw__ \/71' e—2Vb) .
- 2

for we have

» 2 —axﬂ—%d ——__“_/_7_7 d Ze‘gi/(ﬁh
[ (1) 7
and also
VT b \i g2
==L
so that
< f db\ ie—z Vi) — ‘/a<£z>z o2 {1,,)’
e ) de) /o
whence t .

d \it+1

\/b<rdb>ie‘w<“b)=—\/a<%>' v (34).

* ¢Journal de I'Ecole Polytechnique,” vol. ix., pp. 236, 237. Porsson’s investigation is reproduced in
Dr MoreaN’s ¢ Differential and Integral Calculus,” pp. 703, 704. The formule (32) and (33) are
obtained in the same manner as in the text from the integral (31), and the solutions in art. 30 are deduced
from them, in a paper “On Riccarr’s Equation” (‘Quarterly Journal of Mathematics,” vol. xi., 1871,

pp. 267-273).
t In the paper “ On Riccatr’s equation,” referred to in the preceding note, the following two formule

{ J' wdﬁ} e = ¢“( - C% oaved, e { { N du} v = (— )i—l(o%)ie—ﬂ V),

These are inaccurate owing to the omission of the factor +/8 in both, and a wrong sign in the latter ;
when these corrections are made, both become identical with (34). The formula (34) is given, and (35)
is deduced from it, in a paper “ Sur une propriété de la fonction ¢v*” (‘Nouvelle Correspondance

Mathématique,” vol. ii. (1876), p. 240).

occur
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Now, identically, ¢ denoting any function,

a( 5) )= 3 ) (e,

and therefore (34) may be transformed into

d i+1
z+&<j' olb> —2v<a5>__bz+%<db> =),

which, putting a=1, becomes

<r db)ie—meb_ bz+§< a >i+le—2«/6_
. db

d d\i+l
i+ —OWb— __ ,—2W0 .
()7 (@) =

replacing e*¥ by e, this formula becomes

d ANGR!
2i+1 i3 & Vb Vb
2 <db>b <db> er=e

(1 _‘E)w%](l d>z+leax=a2i+1e¢w L (8D)

& dx & dx

Therefore

whence, taking b=a*?,

As was shown in art. 32, this is a particular case of the more general formula

(—3 Eg> 902z+1<i 0%> q_r,(x):( g;jl,; >2i+1¢(w) ;

and this formula itself admits of generalisation, as it can be proved that

(,7:? ZZT) “3”1(;2 ;Zw> “’3’”(;2 6%>M¢(w)=<0%>3m¢(w),
(i i) a)=(n) so={z) s

and generally, » being any positive integer,

(e ()

These formulse are obtained in a paper “ On Certain Identical Differential Relations,”
published in the ¢ Proceedings of the London Mathematical Society,” vol. viii. (1876),
pp- 47-51.

MDCCCLXXXI. 5 M
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37. As mentioned in art. 34, the integral

1 AN e
vl ) ()

of the differential equation (1) was first given by BooLe in the ¢ Philosophical Trans-
actions’ for 1844.

The integral
A1 A\ e et 4 e e
NGRS ¥ Bl v Ter
uU=x <xdx)< p ) R 613

is due to Mr. GAsKIN, and was in effect given by him in a problem set in the Cam-
bridge Senate House Examination for 1839. The problem is as follows™ :
“If m be the greatest root of the equation m*+m=a,

Cd,. {Mﬁ‘_)} or  Cartl (L___n—-L:_J(W——ng)m cos (rx+a)

r=n? |’ .’L’”‘\/’I’

are general values of v in the equation dz2y+<n9-— %)yzo according as m is an integer

or fraction : and in the first case (d,*4n*)""lu=0 where u=yz"; apply the first or
third result to solve the equation

dore{i=S=or

Thus Mr. GASKIN’S theorem is that the solution of

2
il—lfg"-l-agu ) x—: Dy
18
_ [ d\P cos (aa/7+ )
v (A S e

where 7 is to be put equal to a® after the performance of the differentiations, p being
a positive integer, and that in general

u=Cuxrt+! r (P—a®? cos (rata)dr. . . . . . . (38),
p being any positive quantity.

* The problem forms the second part of Question 8 of the paper set on the afternoon of Tuesday,
January 8, 1839 (‘ Cambridge University Calendar,’ 1839, p. 319).
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The form (37) is readily identified with (86), for, from (37),
u—Cx‘”(l d >P cos (za+o)

a do a

1d )Z’ cos (ax+a)

x dae &€

_C p+1<

A method of proving the theorems contained in Mr. GASKIN'S question is given
in Hvymers’s ‘Treatise on Differential Equations, and on the Calculus of Finite
Differences ’ (Cambridge, 1839) pp. 83-85. The result (38) is there verified by
showing that

v= [ ’ (r*—a?)? cos (xr-+a)dr

satisfies the differential equation

v 2p+2 dv
da:2+ x

_|_ 2

and it is remarked that (87) may be verified in a similar manner by showing that

_ ? cos (@y/7+ a)
olaﬂ AT
7 being put equal to a? satisfies
Po_2pdv | o 0.%
de® x ola:+a v=0.

The integral (37) was subsequently obtained by R. Lmstie Erris by a different
process in the ¢ Cambridge Mathematical Journal,t vol. ii.,, p. 195 (February, 1841).
A full account of Errisg’s method, with its application to the equation in question, is
given in DE MorcAN’s ¢ Differential and Integral Calculus,” pp. 701-703.

In a paper, “Remarques sur I’équation y"+% y' +ny=0" (‘ LiouviLLE’s Journal,’

vol. xi., 1846, pp. 338-340), M. LEBESGUE proved that the integrals of the equations

#* In the second edition (1858) of Hymurs’'s work, only the proof that (38) satisfies the differential
equation is given (p. 128), no reference being made to Mr. GasKIN'S other result. An account of BooLE’s
solution and method, taken from the ¢Philosophical Transactions’ for 1844, is however introduced on
pp. 99-106.

+ “On the Integration of Certain Differential Equations,” pp. 169-177, 193-201.

5 M 2
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and
d_gg/ 2i dy
de® @ dz

BRG] 1)
e (LR (T 1)

where v=c sin x,/n+¢, cos #,/n, and the former of the two expressions involves ¢
differentiations and the latter 74 1.

In the ¢Philosophical Magazine’* for May, 1856, Mr. BEnjaMIN WILLIAMSON
obtained by a symbolic method the integrals of the differential equations

- tny=0

are respectively

and

24 20t +1
(Dz—f D+a2>y=0, <D2+%) D+a2>y=0
in the respective forms
d —sinf @ _
y-A( aa"1> cos (ax+a), y=Ax 2““1<%a 1> cos (ax—+o),

and that of the equation
<D2__@_(’L_.;.E_12 +002>y=0

in the form

y=Ax~ <d% a” 1>n cos (ax+a);

and in the ‘ Philosophical Transactions’t for 1857 the late Professor DONKIN obtained,
also by a symbolic method, the integral of this last equation in the form

y=xi<D i)l(cl sin aa--c, cos ai).

¥ ¢ 0On the Solution of Certain Differential Equations” (‘Philosophical Magazine,” Fourth series,
vol. xi., pp. 364-371).
t ¢ On the Equation of Larracw’s Functions, &c.,” vol. 147, p. 44. A proof that the integral of the

1 dPu__dPu [ 2 du z(z+1)
Pl 7 R & R u, which is a simple transformation of (1), may be

presented in the form u=ri (1 %) p(r+at) +1//(r—at) is given by Professor C. N1veEN in the ¢ Solutions
T r

of the Senate-House Problems and Riders’ for 1878, pp. 158, 159.

partial differential equation —
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38. Taking the differential equation in the form (1), which has been adopted as the
standard form in this memoir, it may be observed that, although the integrals

C/d 1\ _
u=x' @; ;) (e ey~ )

1d oL —ax
u_wz+1<wdw><ﬁu‘fﬁ—> e 1))

have thus been given more than once by different mathematlcnns the slightly
modified form

and

i+1 1 d\™ ar ~ax
u=at(~ (cre”+coe™*)

seems scarcely to have been noticed.* It was this form which led me to the solution
in §IL as follows : if «? is written for & after the performance of the differentiations,

then
1d L d\itl
i+1 AL e O+ 1 e+l [ avVE
X (dev) er =" x <d§> e

=2+l g1, o+l | coefficient of 2/*1 in e”'%.e““’f
=21 g1, xi*l | coefficient of Ai*! in e*VE+h
=21 g1, 21| coefficient of A+l in e#V@*+A
=21 ¢!, coefficient of Ai*! in e?V@*+oh,
In my paper ““ On a Differential Equation allied to Ricoarr’s ” (* Quarterly Journal,’

vol. xii., 1872, p. 136), I deduced by this method from the form (39), which is the
same as (19) of art. 29, that the solution of (1) was

clea (2 +4h) + cge““ V(@3+k)
V(@ +h) ’

but T did not then remark the far more simple form

u=u*1 ., coefficient of A’ In

u=coefficient of 4'*! in ¢,V *oW ¢ e=eVE +ab),

89. It is interesting to connect Mr. GASKIN'S definite-integral solution (38) of
art. 87 with that given in art. 26. The latter is

u=oczo+1r> ;_?_S;:)iﬂdf Ce e e e e (40),

* The integral is however in effect expressed in this form in Earnsmaw’s ‘Partial Differential
Equations’ (1871), p. 92.
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p being supposed to be any positive quantity ; and the process of verifying that this
is a solution of the equation is as follows. By actual differentiation, we have, as in

art. 26,

e e RO R e e N ()
and, by a double integration by parts,
I w(wﬁcfg)i“ = [5 @ sjrn;i’“ 2(10;; o <w:f§>i+2}:
+2(10+1)j’ {0 — (2p+3)&%) (gcjsf”;)p+3d§ L. (42).

The integral (40) therefore satisfies the differential equation, since the quantity in

square brackets vanishes between the limits of integration.

If these limits had been any quantities «, 8 independent of x, instead of 0, o, we
should have obtained a result corresponding to (41), but the quantity in square
brackets in (42) would not have vanished. Replacing p+1 by —p, it is clear that

uzw'ﬁﬁ(wz—l—fz)ﬁ cos afdé
will satisfy the differential equation if «, B can be so chosen that
B(ac2+ Ersin aé+ %ﬂg(wz—l-fz)”‘l cos af]i
is zero. This would be the case if* B:&cé’, oa=—ax, but these values of a, 8 are

inadmissible as they are not independent of x.
Transforming now the integral in (40) by the substitution a§=xt, we have

*  cosaf *  cosat
p+1 - — 2t 1p—p R
X J'O (P + Ez)pﬂd‘f aze Jl) (a2+t2)p+1d >
and therefore
[ cosat
U=x pjomidt e e e e (43)
also satisfies the differential equation.
To verify this, we find by differentiation
Pu_ p(p+1) o1 ® tsinat » [” 1% cos at
a2 U= 2paT? j (a2+t2)p+1dt”"x ‘| O(a2+t2)p+ldt Coe e (44)

# As ¢ denotes a positive integer in this memoir, 7’ is used to denote +/(—1).
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and, by integration by parts,

® tsin at sinzt |°  [® xcos at ’
2Mo (“2+t2)f’“dt—[_W)7]o +L> @™ o (45),

whence the right-hand member of (44)

® [ cos wt 12 cos at
— —
x L) JL(0ﬂ+t2)? (a2+t2)?+1}dt

Y (N L P
=x P ‘(O (a2+t2)1'+1dt_a u.

If the limits were a, B the differential equation would still be satisfied if the
quantity in square brackets in (45) vanished between these limits. This is not the
case for any other values of « and B besides 0 and o, but if in (43) p+1 is replaced
by —p, so that the integral is

u=x1’+1j (a®4-1%)7 cos widt,
B

then the quantity in square brackets = —(a?+1%)?*!sin «f, which vanishes when
t=-ai’, and therefore the differential equation is satisfied by the integral

(a®4-1%)? cos wtdt.

—ai

u=mp+1j‘

Since in this case the quantity in square brackets vanishes in virtue of the factor
(a®4-22)7*), we may replace cos xt by cos (xt+«), « being any constant, so that the
solution of the differential equation may be written

ai!

za:Coci’*lj (P+1)P cos (wtta)dt . . . . . . (46).

If in the differential equation a® be replaced by —a?, this integral becomes
'uf_:Cocﬁ+1fa (tz——az)l" cos (wt+a)dt . . . . . . . (47),

which is Mr, GaskiN’s formula (88).
40. This is not however, as stated by Mr. GaskiN, the general integral of the
differential equation, as it in fact contains only one arbitrary constant. For, evidently,

F (t?=a?)? sin wtdt=0,

-



816 MR. J. W. L. GLAISHER ON RICCATTS

so that the introduction of the constant o does not increase the generality of the

solution.

Returning to the integral (46) we find, on putting «=0 and transforming the

integral by the substitution ¢t=1"v,
u—Cwi’“f (v*—a?)?(e+e)dv .

=Cw1’+1<%2——a2>pr (=)o

da? P [ — o
— p+1{ 42
Cor (G (557)

Now, as will be shown in the next article,

a? i gar 14
DAt/ R — 91 Y
(dx2 @> z =(—)2u <m d.z'> z

so that the particular integral (49) is equivalent to

U= Cxi’“(}c d%) (e —e™™),

The complete solution of the differential equation is, by art. 29,

w— 901’“(1 d

2 d > (Cleax_l_ch )

which may therefore be written |

@2 2[00 + oo™
— [ Y o\ (A TG
u=a? < 7 0&) < - )

a2 (] 4
:'901’“"1(&;2— oﬂ)p( 01_"_ we’”dv+czj’we'”dv)

=qrt <clr (v*— oﬂ)ﬁe””alv-|-02J’”z (vg—az)ﬁe’”dv\).

This is the complete solution in the form corresponding to (48).
41. To prove the relation (50), let

0
v=J’ o Sy =Y"0 —2ab
0 2&

(48)

(49).

(50),
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then, denoting for the sake of brevity a2w2+§ by w,

0
—= I —2axte~ dx,
0

whence

and therefore

(~anaa) =, e o)
Again,
ctilo;’ j (—22°4 daPxt)e " da,
and
f:4a2x4e‘wdx= [—e‘”ex”2x3e-z::l: + ]' : e—a’z*c‘l‘%@mg e‘f?;) da
_-_:j: (624 4b%) e~ d ;
therefore
g—z r( 4o+ 4b%) e "d,
whence
(5;_%2)@_ j‘o wevde . . . . . . . . (52).

If instead of the integral v we start with the integral

o0
'vz-=_( x¥ed,
0
we have
o (" 2i+2 2, Qi+4) ,—w
— =\ (—2x¥*+4a*¥ e "da,
0

da?

and, integrating the second term by parts as before, we find

d % f {(4144)a¥ 2+ 4b%% } e d,
so that

d? . ? it —m C
(da"' >’l’i=4(z+1)foacg+ze de=4(4+1v;, . . . . . (b3).

MDCCCLX XXI, ' H N
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Thus from (52) and (53)
(l~ o
—4h? v~‘4’L'J’ a¥e~dx
da? 0
1d

l—>iv, from (51),

YL |
4'2'< 2a da

which is the relation (50).
It follows from (50) in connexion with (21) of art. 31 that

<£ >e —(— )(2@ { G+1)i _1_+(z+2)(@'+1)¢(¢—1) L_&c}ew' (54),

dx? i1t 2 az 2.4 a’z?

a formula given by HARGREAVE in the ¢ Philosophical Transactions’* for 1848, p. 34.
42. In the paper just referred to HARGREAVE obtained by a symbolic process the

solution of the differential equation in the form

. p C elw,’_i_ ¢ 6*(1,.‘&'
lb:xz-}-l(Dg_az)(_l_—Q_A)’

&£

and thence, by (54), deduced the solution in the expanded form.
HARGREAVE also gives on p. 45 of his memoir the complete solution of the equation

du 2m

+ — =0

2{2
in the form

u=c J. (z2_ ay)m— leudz_l_c m—2m+ lj ( _— aQ)—mexzdz
—a

-

-1

— clf <22_ l)m—le/mzdz_l_czw—%wlf (zz_ 1 )—-meamdz. oL (5 5)
-1

One or other of the definite integrals in (55) is however always infinite, except when

m lies between 0 and 1.
In the case of the differential equation (1), this solution becomes

1 1
'Uzz()lwkllj (ZZ__ 1)"/]—1(3“‘”—-}"02%1)"'1-“ (ZQ__ 1)]76u.c:dz’
-1 -1
or, as 1t may be written more conveniently,
1 1
u=clw‘1’[ (1—27) 'P’lem—[—czocl’“f (1 —#*)recdy,
-1 -1

* « On the Solution of Linear Differential Equations,” pp. 31-54.
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It is easy to connect these definite integrals with the series U and V of art. 8, for

1
[_1(1_z2)—p—1enxzdz_f (l_zg)_p_ (1—|—0sz+ 2;Tz2+a33mj73+& )

[ (1—22)~>-1 (1 +7 ;z +a 7 z4+&c )dz

_I(=pT@) , % T(=p)TG) | a*e* T(=p)T@)
T Topre T ar Topry T

T D(-ptd)
;Fﬁ.:?)F(%){ @y dat 3 }
=rprp e ot a o T
_ _I(=p) { 1 a%® 1 atwt _ }
=V Tt 2 Tompe-p Ea T P
whence
-p —p=1,022 —]0)
fj (1= lede= y/m g U,
Similarly v
T'(p+1)

1
artl j 1 =) eevrdy  =,/m = R

and we thus obtain expressions for U and V as definite integrals, taken between the
limits 1 and —1, for all values of p for which the integrals are finite.

§ VII.
Connexion with BrsseL's Functions. Arts. 43-48.

43, If the differential equation (1) is transformed by putting u=a'w, it assumes

the form
dw 1 dw
B LIy (PP L L (50)

The equation of BEssEL’s Functions 18

1 dw v?
+xdm <1—m—2>w_0 e e e e e e (57),

5N 2

w2
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so that (56) becomes identical with (57) if
a==T)=t,  pti=n

We may therefore pass from the solutions of the equation (1) to the solutions of
BrsseL’s equation (57) by multiplying by «™* and putting a=,/(—1), p=r—3.

44. The Besser's Function, J*(x), may be defined for real values of » greater than
—% by either of the formule

P P ot
T(w)= 2”P(+1){ 2(21/+2)+2.4(2v+2)(21/+4)—&c'} - (58),

1 il ! o v—}%
)=, 2T(’”y+—l-)j L=y .. ... (59),

where 7" denotes, as throughout, ,/(—1).
Comparing (58) with the expression V in art. 3, we see that if v=p+13, and if « is
replaced by ¢/, the series in the two formule become identical, the exact relation

between V and BesseL’s Function being

V=AxJrt¥(vax),

(2) v+

where A denotes the constant

. e
and p is supposed to be positive.
The formula (59) corresponds to Mr. GAsKIN’S definite integral solution (38) or to

one of the definite integrals in HARGREAVE'S solution (55).
45. It is known that J*(x) may be exhibited as the sum of two series multiplied

respectively by sin z and cos x, viz.®

J'(x)= (Acosx-l—Bsmx) N (CIOR

2"I‘( )+1)

where

Ae]— w+3 2 Qu4b)2v+T) 2t Qv+ T)(2v+9)(2r+11) af &
=l T 2@t d) 41 @ 2@t 4@ £6) 61 T ¥

Bop 2tB e QrAT2r40) b Q@ 1D +18) o |
T 12 3 T (222w +4) 51 (204 2)(2v+4) 20+ 6) t

* LoMuMEL’s ¢ Studien iber die Bessel’schen Functionen’ (1868), p. 17, or Topnuster’s ¢ Treatise on
Larrace’s Functions, Lave's Functions, and Besser’s Functions’ (1875), p. 292.
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This formula may be written

VN av L 2043 0% 2045 38 :
J(”)“2”+1F(y+1){ <1_m+2v+2 20 2v42 8! +&C'>“

. Q2 +3 %2 2u4-b 33 s
+<1+m+2v+2 ot To,po 3 T &C'>e }

and the expression on the right-hand side therefore corresponds to L(Q+4S) where
Q and S are as defined in art. 3, so that the algebraic theorem to which the two forms
of BessEL’s Functions (58) and (60) lead is V=4(Q-+8).

46. The formula involving descending series for BrsseL’s Function, J'(x) is

re= /(2 SR e eseoirm)

2\ [4P—=1 (P—1%)(HP—3%)(4r*—5?) . 1 1.\,
- \/ <7r90>{ 182 1230 +&C‘} sin (@37 —vm);

the descending series ultimately diverge for all values of » for which they do not
terminate, but the converging terms may be used for the calculation of J*(x); and this
formula was in fact employed by HANSEN in the calculation of his tables of J°(x)
and JY(x)*. If v=p+3, p being an integer, the series terminate and we obtain a
finite expression for J7*¥(x).

Replacing the sine and cosine by their exponential values, this formula may be
written

/L'/V'l'%

J(x)=

S () ek,

where

P—17 1  (BA-=1)4P—3) 1

1 8z 1.2 Sy &

and B differs from a only in having all the terms positive.

* Toyamer's ¢Studien iiber die Bessel’schen Functionen,” p. 88,
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Putting v=p-+3, we have therefore

) 1 . W
Jp+g(x)=_.mk,-.z’])+l{(_)p+1ezza1+e-—zz 1}’

V/ (2me)

where

P+ 1 (p=Dp(p+D(p+2) 1
=1 5 vt 24 T

and B, denotes a similar series, having all the terms positive.
. e . . . 1 ,
If p is a positive integer, this expression corresponds to ég(R’—P ), when the terms

in R” and P’ are written in the reverse order, as in § IV. If p is not an integer, the
series, as already mentioned, are divergent, so that, strictly speaking, the formula only
has a meaning when it contains a finite number of terms. An expression can however
be found for the remainder after a finite number of terms, 7.e., for the difference between
J#H(x) and the sum of these terms, by means of which the use of the formula in

calculation may be justified.
47. It is a known theorem in BEsSEL's Functions that if p is a positive integer, J#(x)

z 1
is equal to the coefficient of 27 in the expansion of eé(z_’?) ; and it follows therefore, by
means of the relation between V and Jr*i(Jaw) in art. 44, that, if p4+1= an even

positive integer =2m),

. . ax 1
X coefficient of 2* in cos - <z-—j>,

~

w22 T(2m 1)

?m

V=(—

and if p-44= an uneven positive integer =2m-1,

22 (20 42 . . .oax 1
V= (—)" —M-“-‘-}L-‘,(f;;]'-—'—-‘ )x‘%x coefficient of 2" in sin {z—").
\ 2 2 2

48. Tt was shown in § II. that the differential equation (1) was satisfied by the
coefficient of 77*! in the expansion of e¥*** and we thus find that if v=p-+1, p
being a positive integer, the general integral of BEssEL’s equation (57) is

w=x"*{ ¢, X coefficient of 77*!in the expansion of cos \/(*ah)

e, ) » . sin /(a®4xh)}.
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§ VIIL
Wiitings specially connected with the contents of the memotr.

[When only a portion of a paper relates to the subject of the memoir, the page-
numbers refer only to this portion. |

WririNes RerERRED TO IN §§ L., IL., ITI.

(i.) 1868. Cavrey, “On Riccarrs Equation.” ¢Philosophical Magazine,” Fourth
series, vol. xxxvi., pp. 348-351.
The equation is written in the form

2

‘_ll"zng—zu

da? ’

and the expressions Py, Q,, Ry, S, of art. 17 are obtained by assuming series of the
forms in question and equating coefficients. Two of the series terminate when ¢ is

the reciprocal of an uneven integer.

(ii.) 1869. —— “Note on the Integration of Certain Differential Equations by
Series.” ¢ Messenger of Mathematics,” First series, vol. v., pp. 77-82.
It is shown that if we have a solution

o a_l a+1 f(/_l(’:(/g o2
A<m +791 x +6162 x +&c.>

of a differential equation, and that if one of the factors in a numerator, say «,, vanishes,
then we may stop at the preceding term, the finite series so obtained being a particular
integral ; but that if we continue the series, notwithstanding the evanescent factor,
and if at length a factor in a denominator, say b,(s>7), vanishes, then the series
recommences with the term involving «**%, and we have another particular integral

0 Qs gyl
7 $+1 - S+1778+2 ot
A — maﬂ’ | __ma.-l.ﬁl I I TTE pats 2+&c s
O bs““l b.y_'.]_bs_(,g

. . ;0 . '
in which A o may be replaced by a new arbitrary constant B.

(i) 1872, GraisHer. “On the Relations between the Particular Integrals in
CavreY’s Solution of Riccatrs Equation.” ¢ Philosophical Magazine,” Fourth series,
vol. xliii., pp. 433-438.

The relations between U,, V,, P,, Q,, R,, S, given in art. 17 are obtained. These
afford an example of the principle explained in (ii.). See the introduction, p. 763.
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. 113 ’ . 7.0 T ZZ,I/ n—1 d‘/ ”
(iv.) 1874. Bacm. “ De I'Integration par les Séries de 'Equation e Y

‘Annales Scientifiques de I'Ecole Normale Supérieure.” Deuxiéme série, vol. iii,

pp- 47-68.
Detailed account, with developments, of (i.) and (iii.). In (iii.) % is written in place

1 . F . . .
of . and B in place of ﬁ;} so that the series are reduced to the forms given in art. 16,

If the differential equation is similarly transformed it becomes

This is the form of the equation adopted by M. Bacs, who finally deduces the series
in the case of Riccart's equation. The form is a very convenient one. See art. 16.

(v.) 1878. GramsEr. “Example Illustrative of a Point in the Solution of
Differential Equations in Series.” ¢Messenger of Mathematics,’ vol. viii., pp. 20-23.
In the well-known expansions quoted in art. 11, viz.

(1—/(1—da) = pxp{l_'_p +]9(Z9+3) 2+23(27+4;)$]3 +5) ot teo }

{14 /(1 —4da)}r=27 { px—l—p(p 8) 27(17-—4;)!(27—5)963_*_&6.}

the series are such that if p is an integer, one terminates, and after a certain number
of zero terms, recommences and reproduces the other. It follows therefore that the

differential equation whose general integral is
w=c,{1—/(1—4x)}’+c, {14+ /(1 —4x)}”

must afford an example of the principle pointed out in (i.). The differential equation
is found to be
AP
w(1—dx) 4 {(4p—6)z —p+1’“—p<20—1)u=0,
and its integration in series affords the illustration referred to in the title. The note
was suggested by art. 11.  See art. 15.

(vi.) 1878. “Generalised Form of Certain Series.” ¢ Proceedings of the
London Mathematical Society,” vol. ix., pp. 197-202.
Theorems deduced from
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n+2a®  (n+2)(n+4) 28 .
(1_m+n+1 2t i Dmr) 3 & >‘”‘

_ n+2 o (n+2)(n+4) a8 —

See art. 7.

(vil) 1878. | “On the Solution of a Differential Equation allied to Rrccarr’s.”
¢ British Association Report’ for 1878 (Dublin), pp. 469, 470.

Proof that the coefficient of A**! in the expansion of e*V@'*+#/ gatisfies the differential
equation

dPu i(t+1)
2 —
="
See arts. 8, 9.

‘WRITINGS REFERRED TO IN § V.

(viii.) 1818.  PorssoN. “Mémoire sur les Intégrales Définies.” <Journal de
I'Ticole Polytechnique,” vol. ix. (cah. xvi.), pp. 236-239, 241.
It is proved that if

® . bar
—

y:’j e T @ da,

then y satisfies the differential equatlon --—‘(_ngba"“z , and it is deduced from this
result that the equation is integrable in a finite form when 7 —-1—3—2— See arts. 20, 36.

A relation between two definite mteglals is also proved. See art. 26.

(ix.) 1872. GrarsHER. “On the Evaluation in Series of Certain Definite Integrals.”
‘ British Association Report’ for 1872 (Brighton), Transactions of the Sections, pp.
15-17.

Investigation of the formula (8) of art. 21 by the process given in arts. 21, 22.

‘WRITINGS REFERRED TO IN § VI.

(x.) 1839. GaskiN. Senate House Problem.
The solution of the equation

d™u p(])+1)
d.r2+ @

is given in the forms

. 2 cos (/7 +a)
u=Cux 1’< dr) —

MDCCOLXXXI. 50
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7 being put equal to a? after the differentiations, and

u=Cuxr* 1r (r*—a?)? cos (ra+a)dr.

See arts. 37, 39.

(xi) 1839. HymEers. ‘A Treatise on Differential Equations and on the Calculus
of Finite Differences’ (1839), pp. 83-85; also, second edition (1858), p. 125.
Solution of Mr. GASKIN’S problem in (x.). See art. 37.

(xii) 1841. FErus. “On the Integration of Certain Differential Equations,”

¢ Cambridge Mathematical Journal,” vol. ii., pp. 193-195.
Independent investigation of the first of Mr. GAsKIN’S forms in (x.). See art. 37.

(xiii.) 1841. Dz Morcax. ¢The Differential and Integral Calculus, pp. 702-704.
Account of Eruis’s method (see xii.) and of PoissoN’s determination of the integrable

cases of RIccATI'S equation (see viil.). See arts. 36, 37.

(xiv.) 1844. Boore. “On a General Method in Analysis,” ¢ Philosophical Trans-

actions’ for 1844, pp. 251, 252.
This paper contains BooLE’s general symbolic method. The solution of the equation

(1) is given in the form

U= da o

1/ od\' cetee™
21 ’

The general method and this solution are reproduced with only slight changes. in
Boorr’s ¢ Differential Equations,” chapter xvii. See art. 34.

(xv.) 1846. LEBESGUE. “ Remarques sur 'Equation y”—|—7£y'+ny= 0,” ¢ LIOUVILLE’S
Journal,” vol. xi., pp. 338, 339.

Solution of this equation in a form involving repeated differentiations with regard
to x. See art. 37.

(xvi) 1848. HARGREAVE. “On the Solution of Linear Differential Equations,”

¢ Philosophical Transactions’ for 1848, pp. 34, 35, 45.
The paper contains the general integral of (1) in the forms,

ar —ar
2 6o+ e
a

u=at(D*—
&

E

1

1
u:clx‘Pj (22_ 1)—19'—lea,vzdz_|_ 02.%77-"1‘[ (zQ_ 1 )pemzdz,
—1

-1

and a development of (D*—a?)’ % in a series. There are also solutions of other allied

equatlions. See arts. 41, 42.
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(xvil) 1856. WiLLiAMSON. “On the Solution of Certain Differential Equations.”
¢ Philosophical Magazine,” Fourth series, vol. xi., pp. 364-369.
The general integral of the equation

a? (141
-d—;;—l— cﬁu:————l(z_z )u
is given in the form

[ d i
u:Aoc‘z<%a‘1> cos (ax+a),

and the solutions of Riccatr's and several other equations are also obtained. The
symbolic expressions are developed by means of the theorem

=\t — y—n n_ln’(n-*—]') —{n+1) ;z—l (n_l)n(n+1)(7l+2) —n+AT)n—2
(DaYr=a~"D g o DT 9d o=t AP

+1.3... (2n—1)a® (D—a™),

of which a proof is given. See art. 37.

(xviil.) 1857. "DoNkIN. “On the Equation of LaPLAcE's Functions, &c.” ¢ Philo-
sophical Transactions’ for 1857, p. 44.
The integral of the equation in (xvii.) is given in the form

VAN .
xl<D;> (¢, sin ax-+c, cos ax).

This solution occurs in & note, as an example of the application of the general
method of the paper to a particular equation. See art. 37.

(xix.) 1871. GramssER. “ On Riccatrs Equation.” ¢ Quarterly Journal of
Mathematics,” vol. xi. pp. 267-273.

By means of the definite integral (31) of art. 36, the solution of RIcCATI'S equation
is obtained in the forms ‘

d\itl, 1, —Lu
— o »—Rg+1. ¢ Pl
u.._z<z Y ldz (cref e 7)), &e.

and the formulee (22) and (23) of art. 31 are proved. See arts. 31, 36.
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(xx.) 1872. “On a Differential Equation allied to Riccarr’s.” ¢Quarterly
Journal of Mathematics,” vol. xii., pp. 129-137.

The equation is (1), and the definite integral j o f ) +1olf 18 apphed as in art. 29

to obtain the general integral in the form

H

u—‘x“'l(l d )‘ 6% ey

x de z

and also in BooLr’s form (29) : the results are transformed so as to give the symbolic
solution of RIccATI'S equation, which is integrated also by BooLk’s method. See

arts. 29, 30, 33, 34, 35, 38.

(xxi.) 1876. “Sur une Propriété de la Fonction e¥=.” ¢ Nouvelle Cor-

respondance Mathématique,” vol. ii., pp. 240-243, 349-350.

Proof of the theorem
d n d 7L+1
W+1 n+3 Ne— oV
2 <dx> v <dx> er=e

by means of the integral

© b
j e~ Bl — _'\/_776—2 lab),
0 2/\/(1

See art. 36.

(xxil.) 1876. “On Certain Identical Differential Equations.” ¢ Proceedings

of the London Mathematical Society,” vol. viii., pp. 47-51.
Generalisations of the theorem in (xxi.), as for example

d \ n+]— =1/ d \n+l } 1 - _1
(24 et

and other similar results. See arts. 33, 36.

”

(xxiil.) 1879. ——- “On a Symbolic Theorem involving Repeated Differentiations.
‘ Proceedings of the Cambridge Philosophical Society,” vol. iii., pp. 269-271.
The theorem is (50) of art. 40, viz.

@ n gt 1 d\»e
L) —=— non "= =\ )
(d&c2 a> z (=)2nn <m dz> z

and the proof is the same ag in art. 41.



